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Abstract: We present a software system that tunes configuration parameters of an algorithm. Parameters are tuned to minimize the 
solving time for a set of problems. SCIP is a mixed integer programming solver developed at Zuse Institute Berlin. The solver has more than 
1500 configuration parameters. Most of the parameters are related to the solution process, others apply to solver's input/output. There are 
both discrete and continuous parameters. Our system modifies parameters one by one to find ones having the most impact on the solving 
time. Then combinations of the best parameter values are evaluated. This approach implies that a great amount of solver runs is needed: 1-2 
values of every parameter multiplied by the number of parameters multiplied by the number of test problems. Thus we employ a public cloud 
to create a temporary computational cluster for faster processing. The paper presents an overview of the system, a method to measure 
algorithm's performance in the cloud and numerical results of system's use on several problem sets. 
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1. Introduction 
Growing number of Infrastructure as a service (IaaS) providers 

we observe today is a direct effect of computation costs getting 
cheaper and of infrastructure automatization levels getting higher. 
Cloud services make it possible to automate more programmer's 
work making him more productive. It may be considered as another 
step in continuous process of adding more abstraction levels to a 
computer system: high-level programming languages, interactive 
debugging, automatic build systems, etc. For developers it allows 
for rapidly creating development and test sandboxes, quickly 
provisioning virtual machines with needed software, testing load 
and scalability. 

There are lots of problems that can be automated by the use of 
clouds. One of such problems is fine tuning an algorithm to make it 
work better in some sense, for example, faster. It can be done in 
many ways: modifying hard coded parameters inside a program, 
smart analysis of the program's source code, adjusting parameters 
inside configuration files of program's modules. In our study we 
have chosen the last described way: fine tuning configuration 
parameters for the SCIP (Solving Constraint Integer Programs) 
solver. SCIP [1] is currently one of the fastest non-commercial 
solvers for mixed integer programming (MIP) and mixed integer 
nonlinear programming (MINLP). It is also a framework for 
constraint integer programming and branch-cut-and-price. It allows 
for total control of the solution process and the access of detailed 
information down to the guts of the solver. Although SCIP is a very 
fast solver even with default parameters, it should be possible to 
fine tune the parameters for one's work. It is quite simple if there are 
a couple of parameters and not many test problems. However SCIP 
is very configurable having more than a thousand parameters. 
Apparently having such a large set of configuration parameters 
makes fine tuning it quite time consuming. That is why we tried to 
automate this process making a system choosing best configuration 
setting for a set of problem instances. Due to vast number of SCIP 
runs needed we had to use a cloud to make the process quick. 

In this paper we use the following terminology. A program has 
configuration parameters controlling how it works. Every parameter 
has a value assigned. A set of parameter values is called the 
settings. When we run a solver it is given settings in form of a 
configuration file and a problem instance. The goal of our system 
may be thought as finding the settings yielding the shortest running 
time on a set of problem instances. 

Other works on general optimization of algorithmic parameters 
include Selection Tool for Optimization Parameters (STOP) [2] 
based on intelligent sampling of settings throughout the space and 
OPAL framework [3] based on mesh adaptive direct search. The 
former tool works with a small set of parameters having discrete 
values. Our approach allows working with large numbers of 
parameters and their values. 

2. Implementation 
Let us begin with a brief overview of the system. One begins 

using it by specifying the number of computing hosts in the 
Vagrant's [4] configuration file and then starting the system by 
running init-virtualbox.sh or init-digitalocean.sh script. After a 
while one has a cluster of a master host and the specified number of 
slave hosts where Simple Linux Utility for Resource Management 
(SLURM) [5] and other essential software are installed and running. 
Then one connects to the master host by issuing vagrant ssh 
command where one can manage the system with optctl.py 
command. 

Currently the settings optimization process consists of three 
phases: time check, big step and inter step. During the first phase 
every problem's instance is evaluated once on each computing node 
with default settings. The main goal of this step is to get an estimate 
of maximum time allowed for a problem instance to run until it's 
killed by SLURM. The big step phase is the most computationally 
intensive one. On this step huge number of settings with only one 
parameter different from defaults is evaluated. As a result the big 
step allows us to sort parameter values based on their impact on 
solving time. Next, on the inter step phase, four best parameter 
values from the head of the big step's sorted list are chosen and all 
their possible combinations are evaluated. After this step we have 
the best settings in terms of running time. This step is not very time 
consuming and can be repeated multiple times. 

2.1. Measuring running time in the cloud 

Measuring running time of a program in the cloud reliably is not 
very simple. Naive approach like wall-clock time or processor 
cycles are not reliable due to computer resources overcommit by a 
cloud provider. Depending on the load other virtual machines 
express on the hypervisor host, program's running time can change 
dramatically. There is a better approach: one can measure the 
number of instructions executed by the CPU while running the 
program. Of course, different instructions may need different 
numbers of cycles to complete so it may be hard to correlate 
running time to the number of instructions executed. Instruction 
count becomes handy when comparing performance the same 
program expresses with the same input but with different settings. 

In x86 CPUs instructions can be counted in hardware by the 
Performance Monitoring Unit (PMU). One can use PAPI or perf 
tool to set up and access the hardware counters. Not every 
hypervisor supports PMU virtualization, e.g. VirtualBox does not. 
However modern KVM releases has such support. 

In our system we used perf tool to measure user space 
instruction count which gives very stable results independent of the 
hypervisor host's load. 
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Here is a sample run of SCIP under perf-stat. Six runs of SCIP 
were made, average counter values and their standard deviations 
can be observed: 

$ perf stat -r 6 -e cpu-clock,task-clock,\ 

cycles,instructions,instructions:u,\ 

instructions:k scipampl TSP_Uniform_50_10.nl  

 Performance counter stats for 'scipampl 
TSP_Uniform_50_10.nl' (6 runs): 

      81154.175629 cpu-clock    

      81154.063870 task-clock 

   175,626,392,898 cycles 

   267,235,503,611 instructions 

   265,101,243,265 instructions:u 

     2,134,260,346 instructions:k 

      81.224668399 seconds time elapsed 

Instaructions:u counter gives much more stable results than 
software counters or cycles counted in hardware. 

Same single CPU virtual machine with two SCIP instances 
running simultaneously: 

 Performance counter stats for 'scipampl 
TSP_Uniform_50_10.nl': 

      82580.457064 cpu-clock                                                    

      82579.334255 task-clock  

   181,566,274,355 cycles 

   267,300,821,128 instructions  

   265,099,385,783 instructions:u 

     2,201,435,345 instructions:k 

     167.578326122 seconds time elapsed 

 

 Performance counter stats for 'scipampl 
TSP_Uniform_50_10.nl': 

      82581.195083 cpu-clock                                                    

      82580.104484 task-clock 

   181,589,302,031 cycles 

   267,299,923,846 instructions  

   265,099,381,995 instructions:u 

     2,200,541,851 instructions:k 

     167.589704033 seconds time elapsed 

Again, instructions:u are much more accurate. 

As we can see from this examples, instructions:u is the most 
stable event counter at least with SCIP. It even allows for running 
multiple solver instances simultaneously with acceptable timing 
accuracy. 

3. Results and discussion 
We have performed testing with two different sets of problem 

instances. One of the sets was tested with two version of SCIP: 
3.0.2 and 3.1.0. Throughout the tests, 48 computing nodes with 
identical virtual machines were used. 

First problem set consisted of ten randomly generated traveling 
salesman problem instances of the same size. SCIP 3.1.0 was used. 
Big step for this set consisted of 28810 jobs and took six hours and 
a half to complete while total CPU time consumed was 296 hours, 
as if 46 machines were used. After one inter step optimal settings 
were obtained. Second inter step showed no improvement. If we 

compare the sums of running times for default settings and for 
optimized ones, we observe 3x speedup with the latter (see Table 
1). Optimized settings consisted of only one parameter value: 

lp/scaling = FALSE 

Table 1: Traveling salesman problem, learning data set. 
Problem instance Defaults, [sec] Optimized, [sec] 
TSP_Uniform_50_1 3,0 2,5 
TSP_Uniform_50_2 10,4 6,4 
TSP_Uniform_50_3 29,4 16,1 
TSP_Uniform_50_4 6,8 8,7 
TSP_Uniform_50_5 39,9 36,6 

 

For testing purposes more TSP instances were generated and 
run with the same optimized parameters (see Table 2), the speedup 
is just 1,41x here. 

Table 2: Traveling salesman problem, control data set. 
Problem instance Defaults, [sec] Optimized, [sec] 
TSP_Uniform_50_11 52,6 27,3 
TSP_Uniform_50_12 11,5 9,2 
TSP_Uniform_50_13 1,4 2,2 
TSP_Uniform_50_14 7,0 5,2 
TSP_Uniform_50_15 270,8 230,6 
TSP_Uniform_50_16 64,0 10,5 
TSP_Uniform_50_17 4,0 3,7 
TSP_Uniform_50_18 27,1 14,4 
TSP_Uniform_50_19 5,0 12,0 
 

Second problem set consisted of five instances which solved 
quickly with SCIP 3.0.2 and very slowly with SCIP 3.1.0. 

An attempt was made to find parameters making SCIP 3.1.0 
working on the problem as good as 3.0.2. We took all parameters 
that changed their default values, were renamed or added in 3.1.0, 
which resulted in 186 parameters (against 1547 total parameters). 
One of the instances (w6_t19_test_8) was dropped after the time 
check phase due to hitting memory limit (512 MB RAM in VM). 
Big step consisted of 1260 jobs for the first four instances and took 
five hours and a half to complete. Total CPU time spent in SCIP 
was 237 hours which equals to 43 hosts working. After one inter 
step optimized settings were obtained. Second inter step showed no 
improvement. If we compare the sums of running times for default 
settings and for optimized ones, we observe 1,65x speedup when 
the latter is used. It should be noted that optimized settings also 
improved time for the problem w6_t19_test_8 that was not involved 
in the tests due to memory limitation. As we can see, our system 
was not able to find settings making SCIP 3.1.0 perform as good as 
SCIP 3.0.2 for this problem, however a noticeable speedup was 
obtained. Optimized settings: 

heuristics/rins/minnodes = 25 

lp/checkdualfeas = FALSE 

lp/disablecutoff = 1 

 

Table 3: Load balancing problem solving times. 
Problem SCIP 3.1.0, 

defaults, [sec] 
SCIP 3.1.0, 
optimized, [sec] 

SCIP 3.0.2, 
defaults,[sec] 

w6_t15_test_4 5,95 3,11 1,97 
w6_t18_test_4 586,18 186,8 70,3 
w6_t19_test_4 1420,4 823,9 223,9 
w6_t19_test_5 941,7 737,6 138,7 
w6_t19_test_8 11596,3 7077,7 382,6 
 

We also tried optimizing settings for this problem set in SCIP 
3.0.2 on all its parameters. During big step 13200 jobs were run in 
13 hours and a half, 594 hours were spent in the solver as if 44 hosts 
were working. After two inter steps optimized settings were 
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obtained, third interstep yielded no improvement. Here 1,26x 
speedup was obtained. Optimized settings after first inter step: 

constraints/linear/upgrade/setppc = FALSE 

lp/solvefreq = 0 

After the second inter step: 

constraints/linear/upgrade/setppc = FALSE 

lp/solvefreq = 0 

conflict/preferbinary = TRUE 

heuristics/fracdiving/freqofs = 1 

heuristics/veclendiving/freq = -1 

4. Conclusion 
As a result of the study the system described was made. It 

works in the cloud, uses Vagrant for virtual machine management, 
SLURM for batch job processing, Python [6] for automation and  
Virtualbox [7] for debugging. It was tested on a number of problem 
classes and noticeable speedup was shown. 

It is possible to extend the system on other solvers e.g. CBC or 
Ipopt. Another possible improvement may be made by making the 
system accessible on the Web. It is also planned to publish the 
source code on GitHub after some cleanup. 

In conclusion we expect that the service may become popular 
among SCIP users. Another conclusion is that cloud computing is 
very convenient and cheap nowadays which is definitely a good 
driver for developing new and nonconventional approaches. 
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