
TUNING PARAMETERS OF A MIXED INTEGER PROGRAMMING SOLVER IN
THE CLOUD

Smirnov S. PhD.1

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Russia 1
sasmir@gmail.com

Abstract: We present a software system that tunes configuration parameters of an algorithm. Parameters are tuned to minimize the
solving time for a set of problems. SCIP is a mixed integer programming solver developed at Zuse Institute Berlin. The solver has more than
1500 configuration parameters. Most of the parameters are related to the solution process, others apply to solver's input/output. There are
both discrete and continuous parameters. Our system modifies parameters one by one to find ones having the most impact on the solving
time. Then combinations of the best parameter values are evaluated. This approach implies that a great amount of solver runs is needed: 1-2
values of every parameter multiplied by the number of parameters multiplied by the number of test problems. Thus we employ a public cloud
to create a temporary computational cluster for faster processing. The paper presents an overview of the system, a method to measure
algorithm's performance in the cloud and numerical results of system's use on several problem sets.

Keywords: ALGORITHMIC PARAMETER OPTIMIZATION, PARAMETER TUNING, CLOUD COMPUTING

1. Introduction
Growing number of Infrastructure as a service (IaaS) providers

we observe today is a direct effect of computation costs getting
cheaper and of infrastructure automatization levels getting higher.
Cloud services make it possible to automate more programmer's
work making him more productive. It may be considered as another
step in continuous process of adding more abstraction levels to a
computer system: high-level programming languages, interactive
debugging, automatic build systems, etc. For developers it allows
for rapidly creating development and test sandboxes, quickly
provisioning virtual machines with needed software, testing load
and scalability.

There are lots of problems that can be automated by the use of
clouds. One of such problems is fine tuning an algorithm to make it
work better in some sense, for example, faster. It can be done in
many ways: modifying hard coded parameters inside a program,
smart analysis of the program's source code, adjusting parameters
inside configuration files of program's modules. In our study we
have chosen the last described way: fine tuning configuration
parameters for the SCIP (Solving Constraint Integer Programs)
solver. SCIP [1] is currently one of the fastest non-commercial
solvers for mixed integer programming (MIP) and mixed integer
nonlinear programming (MINLP). It is also a framework for
constraint integer programming and branch-cut-and-price. It allows
for total control of the solution process and the access of detailed
information down to the guts of the solver. Although SCIP is a very
fast solver even with default parameters, it should be possible to
fine tune the parameters for one's work. It is quite simple if there are
a couple of parameters and not many test problems. However SCIP
is very configurable having more than a thousand parameters.
Apparently having such a large set of configuration parameters
makes fine tuning it quite time consuming. That is why we tried to
automate this process making a system choosing best configuration
setting for a set of problem instances. Due to vast number of SCIP
runs needed we had to use a cloud to make the process quick.

In this paper we use the following terminology. A program has
configuration parameters controlling how it works. Every parameter
has a value assigned. A set of parameter values is called the
settings. When we run a solver it is given settings in form of a
configuration file and a problem instance. The goal of our system
may be thought as finding the settings yielding the shortest running
time on a set of problem instances.

Other works on general optimization of algorithmic parameters
include Selection Tool for Optimization Parameters (STOP) [2]
based on intelligent sampling of settings throughout the space and
OPAL framework [3] based on mesh adaptive direct search. The
former tool works with a small set of parameters having discrete
values. Our approach allows working with large numbers of
parameters and their values.

2. Implementation
Let us begin with a brief overview of the system. One begins

using it by specifying the number of computing hosts in the
Vagrant's [4] configuration file and then starting the system by
running init-virtualbox.sh or init-digitalocean.sh script. After a
while one has a cluster of a master host and the specified number of
slave hosts where Simple Linux Utility for Resource Management
(SLURM) [5] and other essential software are installed and running.
Then one connects to the master host by issuing vagrant ssh
command where one can manage the system with optctl.py
command.

Currently the settings optimization process consists of three
phases: time check, big step and inter step. During the first phase
every problem's instance is evaluated once on each computing node
with default settings. The main goal of this step is to get an estimate
of maximum time allowed for a problem instance to run until it's
killed by SLURM. The big step phase is the most computationally
intensive one. On this step huge number of settings with only one
parameter different from defaults is evaluated. As a result the big
step allows us to sort parameter values based on their impact on
solving time. Next, on the inter step phase, four best parameter
values from the head of the big step's sorted list are chosen and all
their possible combinations are evaluated. After this step we have
the best settings in terms of running time. This step is not very time
consuming and can be repeated multiple times.

2.1. Measuring running time in the cloud

Measuring running time of a program in the cloud reliably is not
very simple. Naive approach like wall-clock time or processor
cycles are not reliable due to computer resources overcommit by a
cloud provider. Depending on the load other virtual machines
express on the hypervisor host, program's running time can change
dramatically. There is a better approach: one can measure the
number of instructions executed by the CPU while running the
program. Of course, different instructions may need different
numbers of cycles to complete so it may be hard to correlate
running time to the number of instructions executed. Instruction
count becomes handy when comparing performance the same
program expresses with the same input but with different settings.

In x86 CPUs instructions can be counted in hardware by the
Performance Monitoring Unit (PMU). One can use PAPI or perf
tool to set up and access the hardware counters. Not every
hypervisor supports PMU virtualization, e.g. VirtualBox does not.
However modern KVM releases has such support.

In our system we used perf tool to measure user space
instruction count which gives very stable results independent of the
hypervisor host's load.

INTERNATIONAL SCIENTIFIC JOURNAL "SCIENCE. BUSINESS. SOCIETY" WEB ISSN 2534-8485; PRINT ISSN 2367-8380

YEAR I, ISSUE 2, P.P. 3-5 (2016)3

Here is a sample run of SCIP under perf-stat. Six runs of SCIP
were made, average counter values and their standard deviations
can be observed:

$ perf stat -r 6 -e cpu-clock,task-clock,\

cycles,instructions,instructions:u,\

instructions:k scipampl TSP_Uniform_50_10.nl

 Performance counter stats for 'scipampl
TSP_Uniform_50_10.nl' (6 runs):

 81154.175629 cpu-clock

 81154.063870 task-clock

 175,626,392,898 cycles

 267,235,503,611 instructions

 265,101,243,265 instructions:u

 2,134,260,346 instructions:k

 81.224668399 seconds time elapsed

Instaructions:u counter gives much more stable results than
software counters or cycles counted in hardware.

Same single CPU virtual machine with two SCIP instances
running simultaneously:

 Performance counter stats for 'scipampl
TSP_Uniform_50_10.nl':

 82580.457064 cpu-clock

 82579.334255 task-clock

 181,566,274,355 cycles

 267,300,821,128 instructions

 265,099,385,783 instructions:u

 2,201,435,345 instructions:k

 167.578326122 seconds time elapsed

 Performance counter stats for 'scipampl
TSP_Uniform_50_10.nl':

 82581.195083 cpu-clock

 82580.104484 task-clock

 181,589,302,031 cycles

 267,299,923,846 instructions

 265,099,381,995 instructions:u

 2,200,541,851 instructions:k

 167.589704033 seconds time elapsed

Again, instructions:u are much more accurate.

As we can see from this examples, instructions:u is the most
stable event counter at least with SCIP. It even allows for running
multiple solver instances simultaneously with acceptable timing
accuracy.

3. Results and discussion
We have performed testing with two different sets of problem

instances. One of the sets was tested with two version of SCIP:
3.0.2 and 3.1.0. Throughout the tests, 48 computing nodes with
identical virtual machines were used.

First problem set consisted of ten randomly generated traveling
salesman problem instances of the same size. SCIP 3.1.0 was used.
Big step for this set consisted of 28810 jobs and took six hours and
a half to complete while total CPU time consumed was 296 hours,
as if 46 machines were used. After one inter step optimal settings
were obtained. Second inter step showed no improvement. If we

compare the sums of running times for default settings and for
optimized ones, we observe 3x speedup with the latter (see Table
1). Optimized settings consisted of only one parameter value:

lp/scaling = FALSE

Table 1: Traveling salesman problem, learning data set.
Problem instance Defaults, [sec] Optimized, [sec]
TSP_Uniform_50_1 3,0 2,5
TSP_Uniform_50_2 10,4 6,4
TSP_Uniform_50_3 29,4 16,1
TSP_Uniform_50_4 6,8 8,7
TSP_Uniform_50_5 39,9 36,6

For testing purposes more TSP instances were generated and
run with the same optimized parameters (see Table 2), the speedup
is just 1,41x here.

Table 2: Traveling salesman problem, control data set.
Problem instance Defaults, [sec] Optimized, [sec]
TSP_Uniform_50_11 52,6 27,3
TSP_Uniform_50_12 11,5 9,2
TSP_Uniform_50_13 1,4 2,2
TSP_Uniform_50_14 7,0 5,2
TSP_Uniform_50_15 270,8 230,6
TSP_Uniform_50_16 64,0 10,5
TSP_Uniform_50_17 4,0 3,7
TSP_Uniform_50_18 27,1 14,4
TSP_Uniform_50_19 5,0 12,0

Second problem set consisted of five instances which solved
quickly with SCIP 3.0.2 and very slowly with SCIP 3.1.0.

An attempt was made to find parameters making SCIP 3.1.0
working on the problem as good as 3.0.2. We took all parameters
that changed their default values, were renamed or added in 3.1.0,
which resulted in 186 parameters (against 1547 total parameters).
One of the instances (w6_t19_test_8) was dropped after the time
check phase due to hitting memory limit (512 MB RAM in VM).
Big step consisted of 1260 jobs for the first four instances and took
five hours and a half to complete. Total CPU time spent in SCIP
was 237 hours which equals to 43 hosts working. After one inter
step optimized settings were obtained. Second inter step showed no
improvement. If we compare the sums of running times for default
settings and for optimized ones, we observe 1,65x speedup when
the latter is used. It should be noted that optimized settings also
improved time for the problem w6_t19_test_8 that was not involved
in the tests due to memory limitation. As we can see, our system
was not able to find settings making SCIP 3.1.0 perform as good as
SCIP 3.0.2 for this problem, however a noticeable speedup was
obtained. Optimized settings:

heuristics/rins/minnodes = 25

lp/checkdualfeas = FALSE

lp/disablecutoff = 1

Table 3: Load balancing problem solving times.
Problem SCIP 3.1.0,

defaults, [sec]
SCIP 3.1.0,
optimized, [sec]

SCIP 3.0.2,
defaults,[sec]

w6_t15_test_4 5,95 3,11 1,97
w6_t18_test_4 586,18 186,8 70,3
w6_t19_test_4 1420,4 823,9 223,9
w6_t19_test_5 941,7 737,6 138,7
w6_t19_test_8 11596,3 7077,7 382,6

We also tried optimizing settings for this problem set in SCIP
3.0.2 on all its parameters. During big step 13200 jobs were run in
13 hours and a half, 594 hours were spent in the solver as if 44 hosts
were working. After two inter steps optimized settings were

INTERNATIONAL SCIENTIFIC JOURNAL "SCIENCE. BUSINESS. SOCIETY" WEB ISSN 2534-8485; PRINT ISSN 2367-8380

YEAR I, ISSUE 2, P.P. 3-5 (2016)4

obtained, third interstep yielded no improvement. Here 1,26x
speedup was obtained. Optimized settings after first inter step:

constraints/linear/upgrade/setppc = FALSE

lp/solvefreq = 0

After the second inter step:

constraints/linear/upgrade/setppc = FALSE

lp/solvefreq = 0

conflict/preferbinary = TRUE

heuristics/fracdiving/freqofs = 1

heuristics/veclendiving/freq = -1

4. Conclusion
As a result of the study the system described was made. It

works in the cloud, uses Vagrant for virtual machine management,
SLURM for batch job processing, Python [6] for automation and
Virtualbox [7] for debugging. It was tested on a number of problem
classes and noticeable speedup was shown.

It is possible to extend the system on other solvers e.g. CBC or
Ipopt. Another possible improvement may be made by making the
system accessible on the Web. It is also planned to publish the
source code on GitHub after some cleanup.

In conclusion we expect that the service may become popular
among SCIP users. Another conclusion is that cloud computing is
very convenient and cheap nowadays which is definitely a good
driver for developing new and nonconventional approaches.

5. References
[1] Tobias Achterberg, SCIP: solving constraint integer

programs, Mathematical Programming Computation, volume 1,
number 1, 2009, pp. 1–41.

[2] Baz, M., Hunsaker, B., Brooks, P., & Gosavi, A. Automated
tuning of optimization software parameters. University of
Pittsburgh Department of Industrial Engineering Technical Report,
7, 2007.

[3] Audet, C., Dang, K. C., & Orban, D. Optimization of
algorithms with OPAL. Mathematical Programming Computation,
2012. pp. 1-22.

[4] Vagrant, http://www.vagrantup.com/

[5] Yoo, Andy B., Morris A. Jette, and Mark Grondona.
"SLURM: Simple linux utility for resource management." Job
Scheduling Strategies for Parallel Processing. Springer Berlin
Heidelberg, 2003.

[6] Sanner, Michel F. "Python: a programming language for
software integration and development." J Mol Graph Model 17.1,
1999, pp. 57-61.

[7] Oracle VM VirtualBox, https://www.virtualbox.org/

INTERNATIONAL SCIENTIFIC JOURNAL "SCIENCE. BUSINESS. SOCIETY" WEB ISSN 2534-8485; PRINT ISSN 2367-8380

YEAR I, ISSUE 2, P.P. 3-5 (2016)5

	1. Introduction
	2. Implementation
	2.1. Measuring running time in the cloud

	3. Results and discussion
	4. Conclusion
	5. References

