Propagation of the least (minimum) quasi-periodic wave in a double-periodic plate

  • 1 National University of Life and Environmental Sciences of Ukraine, Ukraine
  • 2 Latvia University of Life Sciences and Technologies, Latvia


There is a method examined for studying propagation of waves in a double-periodic plate, based on the application of the boundary element method. By means of this method “transparency windows” were found for a wave that propagates in a direction perpendicular to the diagonal of the elementary period of the system



  1. Banerjee J.R., Su H. Development of a dynamic stiffness matrix for free vibration analysis of spinning beams // Computers and Structures. 2004. – Vol. 82, pp.2189–2197.
  2. Duhamel D., Mace B.R., Brennan M.J. Finite element analysis of the vibration of waveguides and periodic structures // J. Sound and Vibr. - 2006. - Vol. 294, N5, pp. 205-220.
  3. Langley R.S. The response of two-dimensional periodic structures to point harmonic forcing // J. Sound and Vibr. - 1996. - Vol. 197, N4, pp. 447-469.
  4. Lee J., Thompson D.J. Dynamic stiffness formulation, free vibration and wave motion of helical springs // J. Sound and Vibr. –2001. - Vol. 239, pp. 297-320.
  5. Mace B.R., Duhamel D., Brennan M.J., Hinke L. Wavenumber prediction using finite element analysis//Eleventh International Congress on Sound and Vibration, St. Peterburg. – 2004.
  6. Banerjee J.R. Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beams // J. Sound and Vibr. – 2004. - Vol. 270, pp. 379-401.
  7. Mead D.J. Wave propagation in continuous periodic structures: research contributions from Southampton, 1964-1995 // J. Sound and Vibr. - 1996. - Vol. 190, N 3, pp. 495-524.
  8. Mencik J.M., Ichchou M.N. Wave finite elements in guided elastodynamics with internal fluid // Inter. J. of Sol. And Structures. – 2007 – Vol. 44, pp. 2148–2167.
  9. Бриллюэн Л., Пароди М. Распространение волн в периодических структурах: Пер. с англ. - М.: ИЛ, 1959. - 457 с.
  10. Бенерджи П., Баттерфилд Р. Метод граничных элементов в прикладных науках. – М.: Мир, 1984. – 494 с.

Article full text

Download PDF