Changes in soil properties due to application of digestate

  • 1 Agricultural Research, Ltd., Department of Agronomy, Czech Republic


The EU is currently addressing the problem of depletion of phosphate, which is a source of phosphorus. Due to the usage of modern digestate treatment enabling macroelements recycling, the digestate can be a suitable substitute for anorganic fertilizers. This experiment is focused on improving the soil properties due to digestate application in sugar beet growing region. Applicated digestate comes from a biogas plant of agricultural cooperative Velešovice. The obtained results show better physical properties (soil structure, stability of soil aggregates) and differences in pH values, Cox (%) and nutrient content between variants.



  1. Paavola, T. & J. Rintala (2008). Effects of storage on characteristics and hygienic quality of digestates from four codigestion concepts of manure and biowaste. Bioresource Technology, 99(15):7041-7050.
  2. Makádi, M., A. Tomócsik, V. Orosz (2012). Digestate: A New Nutrient Source Review. In: Biogas, Chapter: 14, Publisher: In Tech, Editors: Dr. Sunil Kumar, pp. 295-310.
  3. Börjesson, P. & M. Berglund (2007). Environmental systems analysis of biogas systems―Part II: The environmental impact of replacing various reference systems. Biomass and Bioenergy, 31(5):326–344.
  4. Tambone, F., B. Scaglia, G. D’Imporzano, A. Schievano, V. Orzi, S. Salati & F. Adani (2010). Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digestated sludge and compost. Chemosphere, 81(5):577–583.
  5. Liedl, B. E., J. Bombardiere, J. M. Chatfield (2006). Fertilizer potential of liquid and solid effluent from thermophilic anaerobic digestion of poultry waste Water Sci. Technol, 53(8):69–79.
  6. Alburquerque, J. A., C. de la Fuente, A. Ferrer-Costa, L. Carrasco, J. Cegarra, M. Abad and M. P. Bernal (2012). Biomass Bioenergy, 40:181–189.
  7. Monlau, F., C. Sambusiti, E. Ficara, A. Aboulkas, A. Baraka, H. Carrere (2015). New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy & Environmental Science 8.
  8. Badalíková, B. & J. Novotná (2016). Observation of soil properties for anti-erosion soil protection and for digestate application [in Czech: Sledování půdních vlastností při protierozní ochraně půdy a při aplikaci digestátu]. Metodika 34/2016. Zemědělský výzkum, spol. s r. o. Troubsko.
  9. Jaša, S., B. Badalíková, J. Červinka (2019). Influence of Digestate on Physical Properties of Soil in ZD Budišov. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(1):75–83.
  10. Ward, A. J., P. J. Hobbs, P. J. Holliman, D. L. Jones (2008). Optimization of the anaerobic digestion of agricultural resources. Bioresourource Technology, 99:7928–7940.
  11. Tombácz, E., M. Szekeres, L. Baranyi, E. Micheli (1998). Surface modification of clay minerals by organic polyions. Colloids and Surfaces A., 141(3):379–384.
  12. Tombácz, E., G. Filipcsei, M. Szekeres, Z. Gingl (1999). Particle aggregation in complex aquatic systems, Colloids and Surfaces 151(1):233–244.
  13. Vágó, I., J. Kátai, M. Makádi, A. Balla Kovács (2009). Effects of biogas fermentation residues on the easily soluble macro- and microelement content of soil. Trace elements in the food chain. Deficiency or excess of trace elements in the environment as a risk of health, 3:252–256. Publ.: Working Committe on Trace Elements and Institute of Materials and Environmental Chemistry of the Hungarian Academy of Sciences, Budapest. Eds.: Szilágyi M, Szentmihályi K.

Article full text

Download PDF