Tree-soil-water relationships in European black alder forest – case study

  • 1 Faculty of Forestry, Department of Forest Sites and Ecology, Poznań University of Life Sciences, Poland


Environmental factors, including temperature and air humidity, undoubtedly affect the life processes of plants, but in the black alder an additional factor responsible for the tree activity is the seasonal variability of soil moisture. In the conducted research, the activity of the tree, expressed as the conductivity measured in Hz, was seven times lower, in the period when the water level in 2018 was high, than in the analogous period in 2019, when the level of groundwater was low. In the period from January 1 to May 31, 2018, the maximum value of conductivity reached 601 Hz, while in the analogous period of 2019, 4229 Hz. Differences in the soil moisture also affected the length of the dormancy period of the tree, which in the first observation season lasted from November 2017 to April 2018, while at the turn of 2018 and 2019, the tree activity stopped for just a few days when air temperature dropped on January 23, 2019 to -9.8 oC.



  1. San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), 2016. European Atlas of Forest Tree Species. Publication Office of the European Union, Luxembourg. ISBN: 978-92-79-52833-0. DOI: 10.2788/038466.
  2. Braun, H.J. 1974 Rhytmus und Grösse von Wachstum, Wasserverbrauch und Produktivität des Wasserverbrauches bei Holzpflanzen. Allg. Forst- und. Jagd-Ztg. 145 (5), 81– 86.
  3. Herbst, M., Eschenbach, C. and Kappen, L. 1999. Water use in neighbouring stands of beech (Fagus sylvatica L.) and black alder (Alnus glutinosa (L.) Gaertn.). Ann. For. Sci. 56, 107– 120.
  4. Fremstad, E. 1983 Role of black alder (Alnus glutinosa) in vegetation dynamics in West Norway. Nord. J. Bot. 3, 393– 410.
  5. Lhote, P. 1985 Etude écologique des aulnes dans leur aire naturelle en France. ENGREF – Franche-Comté, Besançon, France, p. 125
  6. Mac Vean D. 1953. Alnus glutinosa (L.)Gaertn, J.Ecol., 41, 447- 466.
  7. BDL 2019. Bank danych o lasach wg stanu na 2018.01.01.
  8. SPHL 2004. Siedliskowe podstawy hodowli lasu. DGLP, Warszawa
  9. Matuszkiewicz W. 2006. Przewodnik do oznaczania zbiorowisk roślinnych Polski. PWN, Warszawa. pp. 537.
  10. IUL 2003. Instrukcja urządzania lasu. (2003 b). Cz. 2. Instrukcja wyróżniania i kartowania siedlisk leśnych. Załącznik do Zarządzenia nr 43 Dyrektora Generalnego Lasów Państwowych z dnia 18 kwietnia 2003 r. CILP, Warszawa: 1-118.
  11. DeWald L.E. and SteinerK.C. 1986. Phenology, Height Increment, and Cold Tolerance of Alnus glutinosa Populations in a Common Environment. Silvae Genetica 35, 5-6: 205-211.
  12. Piüra A., Kundrotas V. 2002. Genetic variation in adaptive traits and ecological sensitivity of black alder. Baltic Forestry, 8 (2): 8-22.
  13. Turchina, T. A. (2019). Phenospectrum of Black Alder (Alnus glutinosa Gaertn.) Plants in Ecotopes of the Central Part of Steppe Zone of European Russia. Arid ecosystems, 9, 15-25. doi: 10.1134/S2079096119010104.
  14. BULiGL 2014. Plan urządzenia lasu Nadleśnictwa Doświadczalnego Zielonka na okres od 1 stycznia 2014 r. do 31 grudnia 2023 r. mscr.
  15. Rohde A, Bhalerao R. 2007. Plant dormancy in the perennial context Trends in Plant Science. DOI: 10.1016/j.tplants.2007.03.012.
  16. Vitasse Y., Lenz A., Körner C. 2014. The interaction between freezing tolerance and phenology in temperate deciduous trees. Frontires in plant science. doi: 10.3389/fpls.2014.00541.
  17. Lang, G.A. 1987 Dormancy: a new universal terminology. HortScience 22, 817–820.

Article full text

Download PDF