CONSERVING OF THE RESOURCES
On the possibility of conducting fast and reliable soil tests
- 1 Angel Kanchev University of Ruse
Abstract
The current interest in soil awareness is largely due to the increased importance of growing crops in a changing climate. It is characterized by prolonged droughts, followed by short but intense rainfall, often accompanied by strong winds and low temperatures. In a number of situations and due to insufficient information about the condition of the soil and the applied technologies for its treatment, the latter is not able to absorb rainwater, surface water runoff is formed, which exports large amounts of fertile soil and nutrients. An innovative approach is proposed to perform fast and accurate soil tests using its electromagnetic conductivity. A number of physical, chemical and biological properties can be determined by this method.
Keywords
References
- Братоев, Кр., 2015. Методика за провеждане на изследвания с твърдомер, сп. Mechanization in Agriculture, кн. 3., стр. 11-14.
- Ковда, В.А. Незаменимость почвенного покрова в природе. В кн.:Земельньiе ресурсьi мира, их изпользование и охрана, М. Наука, 1978.
- Ковда, В.А., Рязанов Б. Г., Аридизация суши, вероятность засухи е вероятность засорения почв при орошении. Кн.1. Проблемьi почвоведения, М. Наука, 1978.
- Митков А., Д. Минков. Статистически методи за изследване и оптимизиране на селскостопанската техника – ІІ част. Земиздат, София, 1989
- Митков, А.Л., Д. П. Минков. Математични методи на инженерните изследвания.Русе, 1993
- Митков А. Теория на експеримента. Дунав прес, Русе, 2011
- Cooper, C., Dickinson, J., Phillips, T., and Bonney, R. (2007). Citizen science as a tool for conservation in residential ecosystems. Ecology and Society, 12(2).
- Keuskamp, J. A., Dingemans, B. J., Lehtinen, T., Sarneel, J. M., & Hefting, M. M. (2013). Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution, 4(11), 1070-1075.
- McDaniel, M. D., Tiemann, L. K., & Grandy, A. S. (2014). Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications, 24(3), 560-570.
- Roper, W. R., D. L. Osmond, J. L. Heitman, M. G. Wagger, and S. C. Reberg-Horton. 2017. Soil Health Indicators Do Not Differentiate among Agronomic Management Systems in North Carolina Soils. Soil Science Society of America Journal, 81, 828- 843.
- NRCS. 2017. Natural Resources Conservation Service. Soil Health Website. https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/. Visited October 31, 2017.
- Anderson-Cook, C.M., Alley, M.M.,Roygard, J.K.F., Khosia, R., Noble, R.B., Doolittle, J.A., 2002. Differentiating soil types using electromagnetic conductivity and crop yield maps. Soil Sci. Soc. Am. J. 66, 1562–1570.
- Bohn, H.L., McNeal, B.L., O’Connor, G.A., 1979. Soil Chemistry. Wiley, New York, USA.
- Borchers, B., Uram, T., Hendrickx, J.M.H., 1997. Tikhonov regularization of electrical conductivity depth profiles in field soils. Soil Sci. Soc. Am. J. 61, 1004–1009.
- Bowling, S.D., Schulte, D.D., Woldt, W.E., 1997. A geophysical and geostatistical methodology for evaluating potential subsurface contamination from feedlot runoff retention ponds. ASAE Paper No. 972087, 1997 ASAE
- Brevik, E.C., Fenton, T.E., 2002. The relative influence of soil water, clay, temperature, and carbonate minerals on soil electrical conductivity readings taken with an EM-38 along a Mollisol catena in central Iowa. Soil Survey, Horizons 43, 9–13.
- Cook, P.G., Kilty, S., 1992. A helicopter-borne electromagnetic survey to delineate groundwater recharge rates. Water Resour. Res. 28 (11), 2953–2961.
- Cook, P.G.,Walker, G.R., 1992. Depth profiles of electrical conductivity from linear combinations of electromagnetic induction measurements. Soil Sci. Soc. Am. J. 56, 1015–1022.
- Corwin, D.L., 1996. GIS applications of deterministic solute transport models for regional-scale assessment of non-point source pollutants in the vadose zone. In: Corwin, D.L., Loague, K. (Eds.), Applications of GIS to the Modeling of Non-point Source Pollutants in the Vadose Zone. SSSA Special Publication No. 48. SSSA, Madison, WI, USA, pp. 69–100.
- Corwin, D.L., Loague, K., Ellsworth, T.R., 1999a. Assessing non-point source pollution in the vadose zone with advanced information technologies. In: Corwin, D.L., Loague, K., Ellsworth, T.R. (Eds.), Assessment of Nonpoint Source Pollution in the Vadose Zone. Geophysical Monogr., 108. AGU, Washington, DC, USA, pp. 1–20.
- Drommerhausen, D.J., Radcliffe, D.E., Brune, D.E., Gunter, H.D., 1995. Electromagnetic conductivity surveys of dairies for groundwater nitrate. J. Environ. Qual. 24, 1083–1091.
- Ellsbury, M.M., Woodson, W.D., Malo, D.D., Clay D.E., Carlson, C.G., Clay S.A., 1999. Spatial variability in corn rootworm distribution in relation to spatially variable soil factors and crop condition. In: Robert, P.C., Rust, R.H., Larson,W.E. (Eds.), Proceedings of the Fourth International Conference on Precision Agriculture,
- Fenton, T.E., Lauterbach, M.A., 1999. Soil map unit composition and scale of mapping related to interpretations for precision soil and crop management in Iowa. In: Robert, P.C., Rust, R.H., Larson,W.E. (Eds.), Proceedings of the Fourth International Conference on Precision Agriculture, St. Paul, MN, July 19–22, 1998. ASA-CSSASSSA, Madison, WI, USA, pp. 239–251.
- Fitterman, D.V., Stewart, M.T., 1986. Transient electromagnetic sounding for groundwater. Geophysics 51, 995– 1005.
- Freeland, R.S., Branson, J.L., Ammons, J.T., Leonard, L.L., 2001. Surveying perched water on anthropogenic soils using non-intrusive imagery. Trans. ASAE 44, 1955–1963.
- Joseph, MI, USA.
- Greenhouse, J.P., Slaine, D.D., 1983. The use of reconnaissance electromagnetic methods to map contaminant migration. Ground Water Monit. Rev. 3 (2), 47–59.
- Halvorson, A.D., Rhoades, J.D., 1976. Field mapping soil conductivity to delineate dryland seeps with fourelectrode techniques. Soil Sci. Soc. Am. J. 44, 571–575.
- Hanson, B.R., Kaita, K., 1997. Response of electromagnetic conductivity meter to soil salinity and soil-water content. J. Irrig. Drain. Eng. 123, 141–143.
- Jaynes, D.B., Novak, J.M., Moorman, T.B., Cambardella, C.A., 1995b. Estimating herbicide partition coefficients from electromagnetic induction measurements. J. Environ. Qual. 24, 36– 41. D.L. Corwin, S.M. Lesch / Computers andElectr onics in Agriculture 46 (2005) 11–43 39
- Kaffka, S.R., Lesch, S.M., Bali, K.M., Corwin, D.L., 2005. Site-specific management in salt-affected sugar beat fields using electromagnetic induction. Comput. Electron. Agric. 46, 329– 350.
- Khakural, B.R., Robert, P.C., Hugins, D.R., 1998. Use of non-contacting electromagnetic inductive method for estimating soil moisture across a landscape. Commun. Soil Sci. Plant Anal. 29, 2055–2065.
- Kitchen, N.R., Sudduth, K.A., Drummond, S.T., 1999. Soil electrical conductivity as a crop productivity measure for claypan soils. J. Prod. Agric. 12, 607–617.
- Kravchenko, A.N., Bollero, G.A., Omonode, R.A., Bullock, D.G., 2002. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 66, 235–243.
- McBride, R.A., Gordon, A.M., Shrive, S.C., 1990. Estimating forest soil quality from terrain measurements of apparent electrical conductivity. Soil Sci. Soc. Am. J. 54, 290–293.
- Mitev, G.V., Kr. Bratoev, J. Demirev. 2013. Improvement of Plant Growing Techniques in Drying up and Watrer Scarsity Conditions, Journal of Environmental and Science Engineering A, (2013) Vol. 2, 593 – 606.
- Mitev, G.V., Kr. Bratoev, J. Demirev, V. Dobrinov, T.Todorov, 2013. Machine injection of water holding materials under the plough layer – theoretical motivation of the pipeline parameters., Machines, Technologies, Materials, 2013, Issue 7, 49- 53.
- Mitev, G.V., Types of tillage as a prerequisite for retention or alteration of physical and mechanical properties of soil, Mechanization in Agriculture & Conserving the Resources, ISSN 0861-9638: issue5/2016, p. 11-17.
- Morgan, C.L.S., Norman, J.M.,Wolkowski, R.P., Lowery, B., Morgan, G.D., Schuler, R., 2000. Two approaches to mapping plant available water: EM-38 measurements and inverse yield modeling. In: Roberts, P.C., Rust, R.H.,
- Nyquist, J.E., Blair, M.S., 1991. Geophysical tracking and data logging system: description and case history. Geophysics 56 (7), 1114–1121.
- Rhoades, J.D., 1992. Instrumental field methods of salinity appraisal. In: Topp, G.C., Reynolds, W.D., Green, R.E. (Eds.), Advances in Measurement of Soil Physical Properties: Bring Theory into Practice. SSSA Special Publication No. 30. Soil Science Society of America, Madison, WI, USA, pp. 231– 248.
- Rhoades, J.D., Corwin, D.L., 1990. Soil electrical conductivity: effects of soil properties and application to soil salinity appraisal. Commun. Soil Sci. Plant Anal. 21, 837–860.
- Rhoades, J.D., Corwin, D.L., Lesch, S.M., 1991. Effect of soil ECa – depth profile pattern on electromagnetic induction measurements. Research Report #125. U.S. Salinity Laboratory, Riverside, CA, USA, 108 pp.
- Rhoades, J.D., Corwin, D.L., Lesch, S.M., 1999a. Geospatial measurements of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation. In: Corwin, D.L., Loague, K., Ellsworth, T.R. (Eds.), Assessment of Non-point Source Pollution in theVadose Zone. Geophysical Monograph 108. American Geophysical Union, Washington, DC, USA, pp. 197– 215.
- Slavich, P.G., Yang, J., 1990. Estimation of field-scale leaching rates from chloride mass balance and electromagnetic induction measurements. Irrig. Sci. 11, 7–14.
- Stroh, J.C., Archer, S.R., Doolittle, J.A., Wilding, L.P., 2001. Detection of edaphic discontinuities with groundpenetrating radar and electromagnetic induction. Landscape Ecol. 16 (5), 377– 390.
- Triantafilis, J., Huckel, A.I., Odeh, I.O.A., 2001. Comparison of statistical prediction methods for estimating field-scale clay content using different combinations of ancillary variables. Soil Sci. 166 (6), 415– 427.