MECHANIZATION IN AGRICULTURE

Mathematical modeling of features of electrophysical processes in a vibration plow with piezoelectric actuator

  • 1 Cherkasy State Technological University, Cherkasy, Ukraine

Abstract

In the process of studying multiphysical processes, including electrophysical ones, the resonance frequency at which the piezoelectric actuator maximally influences the amplitude of oscillations of the plow blade was established in the COMSOL Multiphysics software package. The maximum amplitude of oscillations of the plow-piezo actuator system and the rational location of the piezo actuator on the dump, which provides an efficient vibration process, have also been dete rmined. The performed numerical experiments allowed to obtain approximation expressions for simplified determination of the amplitude of oscillations of the system depending on the coordinates of the piezo actuator on the heap. The research results can be used in the design of vibrating soil cultivation bodies in agricultural machinery.

Keywords

References

  1. R. Sh. Abakarova Regulirovanie selskogo hozyaystva. Polozhitelnyie storonyi zarubezhnogo opyita. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta. № 1 96. С. 129- 133. (2015).
  2. Ya. S. Gukov Obrobitok Gruntu. Tehnologiya i tehnIka. MehanIko-tehnologIchne obgruntuvannya energozberIgayuchih zasobIv dlya mehanIzatsiyi obrobitku Gruntu v umovah Ukrayini. K.: Nora-Print, 280 c. (1999).
  3. S.S. Yaschenko, S.A. Filimonov, A.V. Batrachenko Rozrahunok sil, scho vinikayut pri stvorenni vibratsiy za dopo-mogoyu smart piezoceramics, ta doslidzhennya yih rozpodilu u pluzhnomu vidvali. VIsnik Cherkaskogo derzhavnogo tehnologIchnogo unIversitetu. №2. С.21-28. (2020).
  4. A.E. Panich, S. Zhukov Pezoelektricheskoe priborostroenie. Pezoelektricheskie aktuatoryi. Rostov-na-Donu: SVVR, 159 с. (2008).
  5. A M. Fennimore, T. D. Yuzvinsky, Wei-Qiang Han, M. S. Fuhrer, J. Cumings, A. Zettl Rotational actuators based on carbon nanotubes. Nature. V. 424. P. 408-418. (2003).
  6. M. Köhler, W. Fritzsche Nanotechnology: An Introduction to Nanostructuring Techniques. Weinheim: Wiley- VCH, 272 p. (2004).
  7. Yu. D. Tretyakova Nanotehnologii. Azbuka dlya vseh. M.: Fizmatlit.. 368 с. (2008).
  8. T. Cornelius Handbook Techniques and Applications Design Methods; Fabrication Techniques; Manufacturing Methods; Sensors and Actuators; Medical Applications. Springer, 1350 p. (2007).
  9. V.M. Bulgakov, M.O. SvIren, I.P. Palamarchuk, V.V. Driga, O.M. Chernish V.V. VIbratsIynI mashini sIlskogospodarskogo virobnitstva: monografIya. Kirovograd: KOD, 513 с. (2012).
  10. S.S. Yaschenko S.A.. Filimonov A.V. Batrachenko, N.V Filimonova Ispolzovanie smart piezoceramics dlya obra-botki pochvyi v selskom hozyaystve. ”Visnik Cherkaskogo derzhavnogo tehnologIchno-go universitetu” №2. С.30-36. (2019).
  11. V.Ya. Halchenko, S.A. Filimonov, A.V. Batrachenko, N.V. Filimonova Increase the Efficiency of the Linear Piezoelectric Motor. J. Nano- Electron. Phys. 10 No 4, 04025 (5pp) (2018),
  12. V.Ya. Halchenko, Yu.Yu. Bondarenko, S.A. Filimonov, N.V. Filimonova Determination of influence of geometric parameters of piezoceramic plate on amplitude characteristics of linear piezomotor / // Electrical Engineering & Electromechanics. no.1. P. 17-22. (2019).
  13. S.N. Zhukov Pezoelektricheskaya keramika: printsipyi i primenenie: monografiya. Minsk: OOO FUAuinform, 112 с. (2003).
  14. L. Spicci, M. Cati Ultrasound piezo-disk transducer model for material parameter optimization. Excerpt from the Proceedings of the COMSOL Conference. Paris, Р. 1-7. (2010).
  15. V. Sharapov Piezoceramic sensors. Heidelberg, Dordrecht, London, New York: Springer Verlag, 498 p. (2011).

Article full text

Download PDF