International Scientific Journals
of Scientific Technical Union of Mechanical Engineering "Industry 4.0"

  • Journals
  • Submission
  • Events
  • About us
  • Contact

Author: Alexandr Arbuz

  • MATERIALS

    Investigation of the influence of deformation temperature on the radial shear rolling mill on the microstructure evolution of copper

    • Abdrakhman Naizabekov
    • Kadyrgali Dzamanbalin
    • Irina Volokitina
    • Alexandr Arbuz
    • Sergey Lezhnev
    • Evgeniy Panin
    • Andrey Tolkushkin
    Machines. Technologies. Materials., Vol. 17 (2023), Issue 4, pg(s) 164-166
    • Abstract
    • View Article
    •  Article PDF

    One of the effective ways to control the properties of copper is to refine its structure to a nano- or ultrafine-grained level, and primarily with the help of severe plastic deformation. At the same time, radial-shear rolling is one of the promising methods for obtaining long-length rods with a gradient ultra-fine-grained structure. It is known from a number of scientific works that one of the main factors influencing the possibility of obtaining an ultrafine-grained structure in various ferrous and non-ferrous metals and alloys is the deformation temperature of these metals and alloys. The aim of the work is to study the influence of the deformation temperature at the radial-shear rolling mill on the microstructure evolution of copper. The following deformation temperatures of copper rods were selected for the planned studies: 20°C, 100°C and 200°C. The conducted studies have shown that the implementation of radial-shear rolling at ambient temperature compared with rolling at temperatures of 100°C and 200°C made it possible to achieve more intensive refinement of the initial structure. And first of all, this is due to the fact that with radial-shear rolling of copper, realized at ambient temperature, there are no dynamic return processes.

  • TECHNOLOGIES

    Investigation of the influence of deformation temperature on the radial shear rolling mill on the microstructure evolution of copper

    • Abdrakhman Naizabekov
    • Kadyrgali Dzamanbalin
    • Irina Volokitina
    • Alexandr Arbuz
    • Sergey Lezhnev
    • Evgeniy Panin
    • Andrey Tolkushkin
    Machines. Technologies. Materials., Vol. 17 (2023), Issue 3, pg(s) 105-107
    • Abstract
    • View Article
    •  Article PDF

    One of the effective ways to control the properties of copper is to refine its structure to a nano- or ultrafine-grained level, and primarily with the help of severe plastic deformation. At the same time, radial-shear rolling is one of the promising methods for obtaining long-length rods with a gradient ultra-fine-grained structure. It is known from a number of scientific works that one of the main factors influencing the possibility of obtaining an ultrafine-grained structure in various ferrous and non-ferrous metals and alloys is the deformation temperature of these metals and alloys. The aim of the work is to study the influence of the deformation temperature at the radial-shear rolling mill on the microstructure evolution of copper. The following deformation temperatures of copper rods were selected for the planned studies: 20°C, 100°C and 200°C. The conducted studies have shown that the implementation of radial-shear rolling at ambient temperature compared with rolling at temperatures of 100°C and 200°C made it possible to achieve more intensive refinement of the initial structure. And first of all, this is due to the fact that with radial-shear rolling of copper, realized at ambient temperature, there are no dynamic return processes.

  • TECHNOLOGIES

    Study of the radial shear rolling effect on the gradient microstructure formation in technical titanium and mechanical properties changes

    • Abdrakhman Naizabekov
    • Irina Volokitina
    • Alexandr Arbuz
    • Andrey Tolkushkin
    • Darkhan Nurakhmetov
    Machines. Technologies. Materials., Vol. 17 (2023), Issue 1, pg(s) 18-20
    • Abstract
    • View Article
    •  Article PDF

    The work is devoted to experimental studies of the influence of radial shear rolling on the microstructure evolution of the VT-1 titanium alloy and its gradient distribution over the cross section, as well as changes in mechanical properties. In the course of the conducted studies, two different types of microstructure were obtained. At the periphery of the bar near the surface, a relatively equiaxed ultrafine-grained structure with a grain size of 300-600 nm was obtained, while in the axial zone of the bar, an oriented striped texture was obtained. The resulting structure difference of the peripheral and central zones indicates the gradient nature of the structure distribution. This type of distribution is confirmed by the results of the microhardness study over the cross section of a bar rolled to a diameter of 15 mm. The ultimate strength after deformation increased by 58%, while the elongation decreased by 15%.

Congresses and conferences

  • VII International Scientific Conference
    "High Technologies. Business. Society"
    07.-10.03.2022 - Borovets, Bulgaria
  • XV International Conference for Young Researchers
    "Technical Sciences. Industrial Management"
    09.-12.03.2022 - Borovets, Bulgaria
  • XIX International Congress
    "Machinеs. Technolоgies. Materials"
    winter session
    09.-12.03.2022 - Borovets, Bulgaria
  • XXVIII International Scientific Technical Conference
    "Foundry"
    06.-08.04.2022 - Pleven, Bulgaria
  • X International Scientific Conference
    "Engineering. Technologies. Education. Safety"
    06.-09.06.2022 - Borovets, Bulgaria
  • XXX International Scientific Conference
    "trans&MOTAUTO"
    20.-23.06.2022 - Burgas, Bulgaria
  • VIII International Scientific Congress
    "Innovations"
    20.-23.06.2022 - Varna, Bulgaria
  • X International Scientific Congress
    "Agricultural Machinery"
    21.-25.06.2022 - Burgas, Bulgaria
  • VII International Scientific Conference
    "Industry 4.0"
    summer session
    22.-25.06.2022 - Varna, Bulgaria
  • VII International Scientific Conference
    "Conserving Soils and Water"
    24.-27.08.2022 - Borovets, Bulgaria
  • VIII International Scientific Conference
    "Materials Science. Non-Equilibrium Phase Transformations"
    05.-08.09.2022 - Varna, Bulgaria
  • XVII International Congress
    "Machines. Technologies. Materials"
    summer session
    07.-10.09.2022 - Varna, Bulgaria
  • VI International Scientific Conference on Security
    "Confsec"
    05.-08.12.2022 - Borovets, Bulgaria
  • VII International Scientific Conference
    "Industry 4.0"
    winter session
    07.-10.12.2022 - Borovets, Bulgaria
  • VI International Scientific Conference
    "Mathematical Modeling"
    07.-10.12.2022 - Borovets, Bulgaria

Scientific Technical Union of Mechanical Engineering "Industry-4.0"

108, Rakovski Str., 1000 Sofia, Bulgaria
tel. (+359 2) 987 72 90, tel./fax (+359 2) 986 22 40,
office@stumejournals.com