One of the effective ways to control the properties of copper is to refine its structure to a nano- or ultrafine-grained level, and primarily with the help of severe plastic deformation. At the same time, radial-shear rolling is one of the promising methods for obtaining long-length rods with a gradient ultra-fine-grained structure. It is known from a number of scientific works that one of the main factors influencing the possibility of obtaining an ultrafine-grained structure in various ferrous and non-ferrous metals and alloys is the deformation temperature of these metals and alloys. The aim of the work is to study the influence of the deformation temperature at the radial-shear rolling mill on the microstructure evolution of copper. The following deformation temperatures of copper rods were selected for the planned studies: 20°C, 100°C and 200°C. The conducted studies have shown that the implementation of radial-shear rolling at ambient temperature compared with rolling at temperatures of 100°C and 200°C made it possible to achieve more intensive refinement of the initial structure. And first of all, this is due to the fact that with radial-shear rolling of copper, realized at ambient temperature, there are no dynamic return processes.