• INVESTIGATION OF THE EFFECT OF DIAMETERS OF POLYACRYLONITRILE NANO FIBER WITH CARBON NANOTUBE ON MECHANICAL PROPERTIES

    Machines. Technologies. Materials., Vol. 12 (2018), Issue 7, pg(s) 298-301

    In this study, pure polyacrylonitrile (PAN) nano fiber (8 wt. %) and PAN nano fiber with multi-walled carbon nanotubes (MWCNT) were prepared. The content of MWCNT was (1, 3 and 5 wt.%). Electrospin device was used in nanofiber production. Nano diameters of the produced nanofibers were examined by Scanning electron microscopy (SEM). The nanofiber samples were cut 0.5 cm wide and 2 cm long. These samples were subjected to a tensile test on the Shimadzu device. The effect of nanofiber diameters on mechanical properties was investigated. All the MWCNT based composite nanofibers presented larger diameters than those of pure PAN nanofibers. The maximum stress value (76.60 kN) was found to be at PAN nanofiber with 1% MWCNT (average nano fiber diameter is 369.45 nm).

  • TECHNOLOGIES

    EXPERIMENTAL INVESTIGATION AND FUZZY LOGIC MODELING OF 8X8 CM2 MEMBRANE PERFORMANCE OF MICROBIAL FUEL CELL

    Machines. Technologies. Materials., Vol. 11 (2017), Issue 8, pg(s) 404-406

    In this study, microbial fuel cell’s energy conversion performance experimentally investigated from the chemical energy of the organic waste to electrical energy by means of microorganisms. Microbial fuel cell (MFC) consists of two cells which has 15x15x15 cm3 volume. One part of the cell conserves the mud (anode) the other part conserves the water (cathode). The membrane of the microbial fuel cell has 8×8 cm2 area. Two different samples were used in the experiments which are active and settlement mud. The power, volt and current values of the active and settlement mud for different temperature, resistance and bubble were determined. The temperature values consist of ΔT = 8°C, ΔT = 10°C, ΔT = 12°C, ΔT = 14°C. ΔT=Tenvironment- Tmud. For every ΔT value 2 different bubble values were examined (High=21,5 g/h, low=3,5 g/h). For every bubble effect 7 different resistance values were determined (1. Resistance= 3,75 Ω; 2. Resistance =7,5 Ω; 3. Resistance =10,5; 4. Resistance = 14,5 Ω; 5. Resistance = 16 Ω; 6. Resistance = 19 Ω; 7. Resistance = 21,5 Ω) and the performance of the 8×8 cm2 membrane of the MFC is detected. As a result; with the increase of the temperature, resistance and bubble effect the voltage production increases and correspondingly the current decreases. When all the experimental results are evaluated,the highest voltage production (687 mV) occurred at ΔT = 14°C and 21,5 Ω with the high bubble effect in the settlement mud. Also, in this study, MFCs performances in terms of voltage, current, temperature, power was modeled with Rule-Based Mamdani-Type Fuzzy (RBMTF) modeling technique. Input parameters ΔT and time; output parameter power was described by RBMTF if-the rules. 1792 experimental data sets, which obtained for power according to ΔT and time, were used in the training step. The comparison between experimental data and RBMTF is done by using coefficient of multiple determination (R2). The actual values and RBMTF results indicated that RBMTF can be successfully used in MFC.

  • TECHNOLOGIES

    THE EXPERIMENTAL DETERMINATION OF L/D RATIO USING WATER IN MINI CHANNELS TO ANALYSIS OF FLUID TEMPERATURE PERFORMANCE WITH NANO PARTICULATES

    Machines. Technologies. Materials., Vol. 11 (2017), Issue 7, pg(s) 353-355

    Nano fluids is advantageous with high thermodynamic properties compared to pure fluids. In the last half century, rapid developments in production technology, which allows high-precision production of the micro heat exchangers and the use of the micro heat exchangers in different areas. These developments point researchers to enhance new methods in improving the heat transfer. One of these methods is; to improve fluid’s heat transfer by adding different particulates to the fluid. The nano fluids are the new type of heat transfer fluids that are made by adding nano particulates which has high thermal conductivity to a conventional fluid. Since the solid metal has a higher thermal conductivity than the basis fluid, the addition of the metallic particulates to the fluid increases the heat transfer of the mixture. In this study, for analyzing the temperature performance of fluids with Nano particulates; an experimental study was performed using water to determine the optimum mini channel length and mini channel diameter. Performance parameters are; channel length, tube mini channel diameter, the flow and the inlet temperature. According to the experimental results, the maximum temperature performance of the mini channel was found to be at L/D=250/3 (at Selcuk University condition). Therefore, with these results, the optimum mini channel length and mini channel diameter are determined for the high efficiency that is to be achieved by using nano fluids