• TRANSPORT TECHNICS. INVESTIGATION OF ELEMENTS. RELIABILITY

    Energy control principles in an automotive active suspension system

    Trans Motauto World, Vol. 4 (2019), Issue 3, pg(s) 107-110

    In the paper, energy recuperation and management in automotive suspension systems with linear electric motors controlled using a proposed H∞ controller to obtain a variable mechanical force for a car damper is presented. Vehicle suspensions in which forces are generated in response to feedback signals by active elements obviously offer increased design flexibility compared to the conventional suspensions using passive elements such as springs and dampers. The main advantage of the proposed solution using a linear AC motor is the possibility to generate desired forces acting between the unsprung and sprung masses of the car, providing good insulation of the car sprung mass from the road surface disturbances. In addition, under certain circumstances using linear motors as actuators enables to transform mechanical energy of the vertical car vibrations to electrical energy, accumulate it, and use it when needed. Energy flow control (management) enables to reduce or even eliminate the demands concerning the external power source.

  • INNOVATION POLICY AND INNOVATION MANAGEMENT

    Limitations to suspension performance in a two-degree-of-freedom car active suspension

    Innovations, Vol. 7 (2019), Issue 3, pg(s) 111-114

    It is often assumed that if practical difficulties are neglected, active systems could produce in principle arbitrary ideal behavior. This paper presents the factorization approach that is taken to derive limitations of achievable frequency responses for active vehicle suspension systems in terms of invariant frequency points and restricted rate of decay at high frequencies. The factorization approach enables us to determine complete sets of such constraints on various transfer functions from the load and road disturbance inputs for typical choices of measured outputs and then choose the “most advantageous” vector of the measurements from the point of view of the widest class of the achievable frequency responses. Using a simple linear two degree-of-freedom car suspension system model it will be shown that even using complete state feedback and in the case of in which the system is controllable in the control theory sense, there still are limitations to suspension performance in the fully active state.