TECHNOLOGIES
Effects of gamma irradiation processing with two dose rates on the thermal properties of ebony wood
Gamma radiation treatment for the destruction of biological pests is a widely applied method, due to its high efficiency, penetrating power of gamma rays, the ability to control the absorbed dose, speed and absence of toxic residual products. The application of gamma irradiation processing for preservation and conservation of artefacts made of wood requires knowledge of the possible radiation effects on the structure of its components and the selection of an appropriate absorbed dose and dose rate. Тhe present study is devoted to the side effects of gamma irradiation decontamination on the structure of two ebony woods dated to different radiocarbon ages. The changes induced by gamma irradiation at two dose rates: 0.037 Gy/s and 1 Gy/s with absorbed doses from 5 to 25 kGy using differential scanning calorimetry are presented. The effects of the absorbed dose, the dose rate and the age of the samples on the observed radiation effects are considered. Higher effects on the enthalpy of water loss were registered in the younger ebony wood after irradiation at low dose rate. Slight changes of the temperatures of water loss were found in the younger ebony wood sample. No significant changes in the temperatures of thermal decomposition in both ebony wood samples were measured.