• Methodology and results of experimental studies of combined unit for sugar beet tops harvesting on the basis of a row-crop tractor

    Mechanization in agriculture & Conserving of the resources, Vol. 64 (2018), Issue 5, pg(s) 158-161

    On the basis of an integrated wheel-type tractor (traction class 3.0), there was created the new combined machine and tractor unit carried out a continuous flat cutting of the sugar beet tops with a front mounted sugar beet tops cutting machine. To carry out this field experimental studies, a program and methodology was developed based on measurements of the remains of the tops on the heads of root crops after passing through the aggregate at a given rate of translational motion, the height of the installation of its rotary cutting mechanism above the level of the soil surface and the frequency of its rotation. The results of the study were statistically processed on a personal computer using regression and correlation analysis methods. Based on the developed methodology of the full-factor experiment, empirical mathematical models were constructed in the form of regression equations for the process of cutting the tops of sugar beet. According to the results of these calculations, it was found that the speed of the forward movement of the sugar beet tops cutting aggregate exerts the greatest influence on the mass of the remains of the tops on the spherical surfaces of the root heads, after a continuous main cut. In a lesser extent, this process is influenced by the rotational speed of the rotor of the sugar beet tops cutting machine and the height of the rotor installation above the soil surface level by means of two pneumatic copying wheels. According to the results of experimental studies, it has been established that the rational design and technological parameters of the process for harvesting sugar beet tops by a front mounted sugar beet tops harvesting  machine with a rotary cutting apparatus is its rotation frequency equal to 960 rpm, the speed of the aggregate should not exceed 2.0 m.s-1, and the height of the rotor installation should be as low as possible, not less than 0.02 m.



    Trans Motauto World, Vol. 2 (2017), Issue 3, pg(s) 104-106

    Maintaining of the combine harvesters in an efficient condition throughout the harvest season is an important task of technical service. The most important elements in the work of combine harvesters are their steering mechanisms, the performance of which must have a high degree of availability, especially of their hydraulic drives. The purpose of this study is to increase the operational reliability of the steering drives of the combine harvesters, based on the development of an improved method for diagnosing of their hydraulic drives. During the research, the methods of theoretical and experimental research were used, based on the theory of machine operation, hydraulics, as well as modern methods of experimental studies of hydraulic equipment. The data of the experimental studies were processed by statistical methods using a PC. Theoretically and experimentally, an improved method for diagnosing of the hydraulic drives has been developed with the aim to increase the technical readiness of combine harvesters and reduce the costs of their maintenance and repair. A new methodical approach and results of studies on the creation of a diagnostic system for the hydraulic drive of the combine harvester’s power steering have been developed.



    Mechanization in agriculture & Conserving of the resources, Vol. 63 (2017), Issue 5, pg(s) 174-179

    The scientific problem of this study is the justification of the expediency of combining the technological operations of sowing cereals and applying the main and starting doses of mineral fertilizers when using a combined machine and tractor unit (aggregate). During the research there were used methods of conducting field experiments using standard equipment. During the planned experiments there were used correlation methods and methods of numerical calculations on a PC. The comparative studies of the quality of barley sowing with basic and modernized fertilizer-sowing units showed the following values of qualitative indicators. So, the coefficient of seed depth variation of the base unit was – 8.2%, and the combined (modernized) unit – 4.7%; The uniformity of seed distribution along the length of the line for the basic unit is – 63.8%, for the modernized unit – 84.9%; Field germination of seeds when sowing the basic unit is 80.4%, modernized – 87.4%. Thus, when using the combined fertilizer-seeding unit, the uniformity of seed distribution along the length of the string will be substantially increased. At the same time, the field germination of seeds will increase, and the coefficient of variation in the depth of seed placement in the furrow will decrease. Based on the results of field experimental studies, an increase in the yield of spring wheat and barley was found in the application of a combined fertilizer-seed aggregate with the simultaneous introduction of a basic fertilizer-seeded fertilizer into the soil and sowing of cereals with the application of a starting dose of mineral fertilizer in comparison with the known schemes of such operations. The obtained results confirm the expediency of combining these technological operations with one pass of the combined machine-tractor unit (aggregate).



    Mechanization in agriculture & Conserving of the resources, Vol. 63 (2017), Issue 1, pg(s) 3-10

    In theoretical study of most of agricultural machines working bodies there is a need of the modeling of material particles (material points) motion on their working surfaces. Questions of such modeling in cases when the specified surfaces are give to material points movement with difficult trajectories are especially difficult. Objective of this research is to develop the basic provisions of complex movement theory of material point. When carrying out research methods of modeling theory, theoretical mechanics, higher mathematics, in particular differential geometry, methods of drawing up programs and numerical calculations on the personal computer are used. As a result of the conducted theoretical research the complex movement of material point which relative movement happens in a moving trihedron of curve which is defined by the natural equations is considered. The figurative movement of a trihedron is defined by differential characteristics of curve. Competency of use of Frenet formulas for finding absolute speed and point acceleration in projections on unit vectors of the moving trihedron is proved. As a result of numerical calculations on the personal computer there were found absolute trajectories of material point movement and qualitative assessment of received results was carried out.


    Mechanization in agriculture & Conserving of the resources, Vol. 62 (2016), Issue 3, pg(s) 30-33

    Aim of the paper was to compare the effects of two very similar fertilisers on nitrous oxide (N2O) flux from soil to the atmosphere in laboratory conditions. There were used following fertilisers: granulated nitrogenous fertiliser DASA® 26/13 with content of nitrogen is 26 %, content of sulphur is 13 %, and nitrogen fertiliser ENSIN® containing sulphur and nitrification inhibitors dicyandiamide DCD and 1,2,4- triazole (TZ). Both fertilisers are produced by the same manufacturer DUSLO, Inc., Šala, Slovakia. For both fertilisers there were carried -1 out three variants of experiments for equivalent of application rates 0, 250 and 500 kg.ha . The amount of N2O emissions released from soil to the atmosphere was measured by photo-acoustic field gas monitor INNOVA 1412 connected to multipoint sampler INNOVA 1309. The experiments were conducted for 30 days in laboratory conditions. The fertiliser was incorporated into the soil in sampling tubes to a depth of 80 mm after 24-hours measurement. Subsequently, after every 24 hours of measurement, another 48 hours was carried out, and this measuring cycle was repeated 10 times. The results of our experiment have confirmed that the fertiliser application rate and type of used fertiliser have a significant effect on N2O flux and have confirmed the importance of accurate and uniform application of the fertilisers in field conditions in order to eliminate the negative environmental effects.


    Mechanization in agriculture & Conserving of the resources, Vol. 61 (2015), Issue 3, pg(s) 10-14

    In order to determine the optimal design and kinematic parameters of vibrational digging harvest technology of the sugar beet roots in relation to the physical and mechanical soil properties it is necessary to develop a new theory of the sequential oscilations of the sugar beet root during its vibrating digging from the soil. Such theory should be based on a deep study of the mechanism of force interaction of digs plough shares vibration working body with the body beet root and its further translational vibrations in the soil, as in an elastic medium.

    In a first stage we have developed an equivalent scheme of the above mentioned harvest technology, there were determined all forces acting on sugar beet root (conic approximation) and surrounding soil (in depth of movement of the digging plough shares and deeper – point of relative gripping), there were given kinematic parameters of the oscillating action on the sugar beet root, and axes were introduced.

    Next there were composed of linear second order differential equations with constant coefficients with the right parts, which describe the free and forced vibrations of beet root and its point of attachment along the axes, together with the surrounding soil root in the first stage extraction.

    Results obtained by using of systems of differential equations obtained on the PC have enabled to formulate the law of motion of beet root in the process of direct extraction from the soil vibration, as well as calculate the frequency and amplitude of free and free accompanying vibrations and amplitudes of forced vibrations root as a rigid body in an elastic medium.

    According to calculations, the centre of mass of root through 0,025 s to implement horizontal translational movement to a distance of 50 mm at a frequency of the disturbing force 10 … 20 Hz vertical and translational movement over a distance of 35 mm, at the same frequency vibrations and soil hardness c1 = 2·105 N/m2.