• SCIENCE

    Nuclear power plant steam re-heating system – exergy analysis at four different operating regimes

    Science. Business. Society., Vol. 7 (2022), Issue 2, pg(s) 38-41

    In this paper is performed exergy analysis of steam re-heating system, through all of its components, which operate in nuclear power plant. Analyzed re-heating system consists of the moisture separator (MS) and two re-heaters (RH1 and RH2) and is observed in four different operating regimes. MS has significantly lower exergy destructions and significantly higher exergy efficiencies in comparison to both re-heaters, regardless of the observed operating regime. MS and both re-heaters did not achieve the lowest exergy destructions and the highest exergy efficiencies in the same operating regime which notably complicated possible improvements. Further research of presented re-heating system will be based on operation improvement of RH1 and RH2 – performed exergy analysis shows that MS operation in any operating regime leaves no room for further improvement.

  • MATHEMATICAL MODELLING OF TECHNOLOGICAL PROCESSES AND SYSTEMS

    Isentropic analysis of nuclear power plant steam turbine and turbine cylinders

    Mathematical Modeling, Vol. 8 (2024), Issue 1, pg(s) 24-27

    This paper presents isentropic analysis results of the whole steam turbine (as well as turbine cylinders) from nuclear power plant. In the analyzed steam turbine, LPC (Low Pressure Cylinder) is the dominant mechanical power producer – mechanical power produced in the LPC is more than two times higher in comparison to mechanical power produced in the HPC (High Pressure Cylinder). Whole analyzed steam turbine produces real mechanical power equal to 1372.47 MW, while the highest possible mechanical power which can be produced in the whole turbine when all the losses are neglected (ideal mechanical power) equals 1686.96 MW. LPC has a notably higher isentropic efficiency than HPC, regardless of higher isentropic loss (isentropic efficiencies of the LPC and HPC are 84.41% and 74.84%, respectively). HPC has notably higher specific steam consumption and specific heat consumption in comparison to LPC. Whole turbine has an isentropic efficiency equal to 81.36%, isentropic loss equal to 314.48 MW, specific steam consumption of 9.15 kg/kWh and specific heat consumption of 3799.06 kJ/kWh, what is in the range of similar comparable steam turbines from nuclear power plants.

  • MACHINES

    Exergy analysis of a complex three-cylinder steam turbine at various loads

    Machines. Technologies. Materials., Vol. 18 (2024), Issue 1, pg(s) 3-6

    Exergy analysis results for the Whole observed steam Turbine and each of her cylinders at three loads are presented in this paper.
    Observation of all cylinders shows that LPC (Low Pressure Cylinder) is the dominant mechanical power producer at the highest observed load, while at partial loads the dominant mechanical power producer is IPC (Intermediate Pressure Cylinder). At Load 100% Whole Turbine produces mechanical power equal to 341.11 MW. IPC is the cylinder with the lowest exergy destruction and the highest exergy efficiency (higher than 95%) at all observed loads. The exergy efficiency of the Whole Turbine (WT) continuously increases during the increase in turbine load (WT exergy efficiency is the lowest at Load 50% and equal to 91.36%, while at the Load 100% WT exergy efficiency is the highest and equal to 92.93%). Analyzed turbine is projected to operate dominantly on the Load 100% because at that load the exergy efficiencies of all cylinders and Whole Turbine are higher than 91%.

  • SCIENCE

    Isentropic analysis of entire intermediate pressure steam turbine cylinder and cylinder segments

    Science. Business. Society., Vol. 9 (2024), Issue 1, pg(s) 3-6

    In this paper is performed an isentropic analysis of the entire Intermediate Pressure Cylinder (IPC) and all of his four Segments. Obtained results show that the first Segment (Seg. 1) is the dominant mechanical power producer of all Segments and it produces 16816.70 kW of mechanical power in the real (polytropic) expansion process. Analyzed IPC produces more than half mechanical power of the entire turbine in which he operates (in real expansion process IPC produces mechanical power equal to 58499.48 kW). Isentropic loss and isentropic efficiency of IPC Segments are reverse proportional – Seg. 3 which has the highest isentropic loss simultaneously has the lowest isentropic efficiency (equal to 82.44%), while Seg. 4 which has the lowest isentropic loss has the highest isentropic efficiency (equal to 87.26%). Entire IPC has an isentropic efficiency equal to 87.78%. Any improvements and modifications which can potentially be performed in the observed IPC should firstly be based on the turbine stages mounted inside Seg. 3.

  • MACHINES

    Energy evaluation of a three-cylinder steam turbine which operates in combined cycle power plant

    Machines. Technologies. Materials., Vol. 17 (2023), Issue 8, pg(s) 294-297

    This paper presents an energy analysis of a three-cylinder steam turbine from a combined cycle power plant. Observing all the cylinders from the analyzed turbine, it is found that the dominant mechanical power producer is Low Pressure Cylinder (LPC), followed by the Intermediate Pressure Cylinder (IPC), while High Pressure Cylinder (HPC) is the cylinder which produces the lowest mechanical power. Whole observed steam turbine develop 119.41 MW of useful mechanical power. Energy loss and energy efficiency of all cylinders are reverse proportional – higher energy efficiency will result with lower energy loss and vice versa. IPC is the cylinder which has the lowest energy loss (equal to 2.59 MW) and the highest energy efficiency of 93.32%. Whole observed steam turbine has energy loss equal to 23.43 MW, while its energy efficiency is equal to 83.60%, what falls in the expected range of such low power steam turbines. Steam mass flow rate through each cylinder is the main element which defines produced mechanical power and energy flows.

  • MATHEMATICAL MODELLING OF TECHNOLOGICAL PROCESSES AND SYSTEMS

    60 MW steam turbine conventional and segmental isentropic analyses comparison

    Mathematical Modeling, Vol. 7 (2023), Issue 2, pg(s) 45-48

    This paper presents results of two different isentropic analysis types: conventional isentropic analysis which considers the whole steam turbine cylinder and segmental isentropic analysis which considers all cylinder parts (segments). In conventional isentropic analysis is obtained that isentropic efficiency of the analyzed turbine is 73.39%, what is in a range of expected isentropic efficiencies for such steam turbines (in the mechanical power range around 60 MW). Segmental isentropic analysis shows that the last two segments (fifth and sixth segment) of the analyzed turbine did not show proper operation (especially the fifth turbine segment which isentropic efficiency is unacceptably low and equal to 26.73% only). Such isentropic efficiency results, related to the fifth and sixth turbine segment, indicate highly problematic operation, or the most likely malfunction of at least some turbine stages in these segments. For the analyzed steam turbine can be recommended that it should be stopped as soon as possible and that turbine stages mounted in the last two segments should be checked, repaired or replaced.

  • MACHINES

    Exergy analysis of steam turbine from ultra-supercritical power plant

    Machines. Technologies. Materials., Vol. 17 (2023), Issue 3, pg(s) 98-101

    In this paper is presented an exergy analysis of steam turbine (along with analysis of each cylinder and cylinder part) from ultrasupercritical power plant. Observation of all the cylinders shows that IPC (Intermediate Pressure Cylinder) is the dominant mechanical power producer (it produces mechanical power equal to 394.44 MW), it has the lowest exergy loss and simultaneously the highest exergy efficiency (equal to 95.84%). HPC (High Pressure Cylinder) has a very high exergy efficiency equal to 92.37% what confirms that ultrasupercritical steam process is very beneficial for the HPC (and whole steam turbine) operation. LPC (Low Pressure Cylinder) is a dissymmetrical dual flow cylinder, so both of its parts (left and right part) did not produce the same mechanical power, did not have the same exergy loss, but their exergy efficiency is very similar and in a range of entire LPC exergy efficiency (around 82.5%). Whole observed steam turbine produces mechanical power equal to 928.03 MW, has exergy loss equal to 93.45 MW and has exergy efficiency equal to 90.85%. The exergy efficiency of the whole analyzed steam turbine is much higher in comparison to other steam turbines from various conventional power plants.

  • MACHINES

    The influence of steam extractions operation dynamics on the turbine efficiencies and losses

    Machines. Technologies. Materials., Vol. 17 (2023), Issue 1, pg(s) 3-6

    In this paper are presented results of a low-pressure steam turbine energy and exergy analysis during turbine extractions opening/closing. All possible combinations of extractions opening/closing are observed. The highest mechanical power which can be produced by this turbine (when all steam extractions are closed) is 28017.48 kW in real and 31988.20 kW in an ideal situation. For all observed steam extractions opening/closing combinations is obtained that energy efficiency and energy losses range is relatively small (from 87.56% to 87.94% for energy efficiency and from 3360.46 kW to 3970.72 kW for energy losses). Trends in energy and exergy losses (destructions) are identical for all observed extractions opening/closing combinations. Analyzed turbine efficiencies (both energy and exergy) will decrease for a maximum 1% during the steam extractions closing. Turbine steam extractions closing decrease turbine efficiencies and increases turbine losses (destructions), what is valid from both energy and exergy aspects.

  • DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”

    Determining normalized friction torque of an industrial robotic manipulator using the symbolic regression method

    Industry 4.0, Vol. 8 (2023), Issue 1, pg(s) 21-24

    The goal of the paper is estimating the normalized friction torque of a joint in an industrial robotic manipulator. For this purpose a source data, given as a figure, is digitized using a tool WebPlotDigitizer in order to obtain numeric data. The numeric data is the used within the machine learning algorithm genetic programming (GP), which performs the symbolic regression in order to obtain the equation that regresses the dataset in question. The obtained model shows a coefficient of determination equal to 0.87, which indicates that the model in question may be used for the wide approximation of the normalized friction torque using the torque load, operating temperature and joint velocity as inputs.

  • VEHICLE ENGINES. APPLICATION OF FUELS TYPES. EFFICIENCY

    Energy analysis of main and auxiliary steam turbine from coal fired power plant

    Trans Motauto World, Vol. 8 (2023), Issue 1, pg(s) 28-31

    This paper presents an energy analysis of main and auxiliary steam turbines from conventional coal fired power plant. Main turbine is composed of three cylinders connected to the same shaft which drives an electric generator, while auxiliary steam turbine is used for the boiler feedwater pump drive. The whole analyzed main steam turbine produces mechanical power equal to 312.34 MW, while in an ideal situation, it can produce mechanical power equal to 347.28 MW. The highest part of the mechanical power in the main turbine is produced in the low pressure cylinder. Auxiliary steam turbine in exploitation develops mechanical power equal to 6768.94 kW, while in an ideal situation it can develop 8029.03 kW. Whole main turbine energy efficiency is equal to almost 90% what is in the expected range for such high power turbines. The auxiliary steam turbine has an energy efficiency equal to 84.31%, which is almost 6% lower in comparison to the main turbine. Energy flows delivered to the last two feedwater heaters (HPH2 and HPH3) in the condensate/feedwater heating system are notably higher in comparison to energy flows delivered to any other condensate/feedwater heater.

  • VEHICLE ENGINES. APPLICATION OF FUELS TYPES. EFFICIENCY

    Energy analysis of two-cylinder steam turbine from nuclear power plant

    Trans Motauto World, Vol. 7 (2022), Issue 2, pg(s) 81-84

    In this paper, two-cylinder steam turbine, which operates in nuclear power plant is analyzed from the energy viewpoint. Along with the whole turbine, energy analysis is performed for each turbine cylinder (High Pressure Cylinder – HPC and Low Pressure Cylinder – LPC). A comparison of both cylinders shows that the dominant mechanical power producer is LPC, which also has much higher energy loss and much lower energy efficiency. Therefore, any potential improvement of this steam turbine should be based dominantly on th e LPC, which also has a dominant influence on energy analysis parameters of the whole observed turbine. The whole turbine produces real (polytropic) mechanical power equal to 1247.69 MW, has energy loss equal to 352.70 MW and energy efficiency equal to 77.96%. According to obtained energy efficiency value it can be concluded that the whole analyzed steam turbine is comparable to main marine propulsion steam turbines, while its energy efficiency is much lower in comparison to steam turbines from conventional steam power plant s which operates by using superheated steam.

  • MACHINES

    Energy analysis of a steam turbine with two cylinders and steam re-heating

    Machines. Technologies. Materials., Vol. 16 (2022), Issue 5, pg(s) 155-158

    This paper presents an energy analysis of middle-power steam turbine with two cylinders (High Pressure Cylinder – HPC and Low Pressure Cylinder – LPC) and steam re-heater after the HPC (and before the LPC). Based on a steam operating parameters from the literature, performed energy analysis show that LPC develops higher power and has higher energy efficiency (81.45%) in comparison to HPC (which energy efficiency equals 80.12%). Re-heater is a heat exchanger (flue gases are used for steam heating) which has low energy loss (824.19 kW) and high energy efficiency (97.76%), what is expected energy performance of such heat exchanger. The entire analyzed turbine develops a power of 127480.60 kW and has energy loss equal to 29848.21 kW with energy efficiency of 81.03%.