• Improving the corrosion resistance of carbon steel cylindrical pipe by nano-materials coating, part -2

    Materials Science. Non-Equilibrium Phase Transformations., Vol. 7 (2021), Issue 3, pg(s) 79-84

    This part is a continuation of Part-1, which was studying the effect of anti-corrosion nano-materials coating using zinc (Zn) and cobalt (Co) on corrosion resistance and its relationship with mechanical properties. While, part 2 was on studying the linear stresses resistance after coating by using the same nanomaterials of paret-1 of carbon steel pipe and their relationship with chemical corrosion resistance using finite element analysis (FEA). The coating was tested with different thicknesses of nano-layers (300 μm, 600 μm, 900 μm, 10 μm) on a thick-walled cylindrical pipe subjected to a uniformly distributed internal pressure of 4 bars. The results showed that the value of linear normal stresses did not change when coating with 300 μm for both nano-coating materials. However, it was started to decrease slightly when covered with 600 μm of cobalt and continues to decrease with increasing the coating thickness. In addition, the results have shown that the overall improvement in linearized normal stresses and corrosion resistance due to cobalt coating can be about (66 %) higher in comparison with Zinc at 10 μm thickness of coating.

  • TECHNOLOGIES

    Improving the Corrosion Resistance of Carbon Steel Cylindrical Pipe by Nano-Materials Coating, Part -1.

    Machines. Technologies. Materials., Vol. 15 (2021), Issue 3, pg(s) 110-116

    Recent research has shown that the Nano coating materials play a vital role in improving performance of corrosion resistance in hostile environment and enhancing the mechanical properties and reducing the dimension changes. Due to the superior capabilities of Nano coating in many benefits which can be achieved, in addition to corrosion resistance, mechanical properties, make it smoother, stronger and improves its adhesive properties. In this work, the effect of anti-corrosive nanomaterials (Cobalt and Zinc) coating on chemical corrosion behavior and mechanical properties of carbon steel cylindrical pipe were studied in detail. The Nano-coating was done with different thicknesses (300nm,600nm,900nm and 10 μm), then analyzed using ANSYS software technology (version .19).The results showed that there is a strong relationship of corrosion improvement with improving mechanical properties, especially surface deformation resistance, elastic strain and stresses reduction of the inner pipe surface which contains a pressurized corrosive fluid. The maximum improvement was with the thickness of the cobalt coating (10 μm. The result of improvement in corrosion resistance of the cobalt-coated surface is approximately (5.165%) compared to the uncoated surface, also, the results showed an improvement in mechanical resistance and corrosion res istance because of deposition of cobalt particles better than zinc particles in all different thicknesses, with a maximum of about (66%) compared to zinc. Therefore, can conclude that the improving corrosion resistance due to coating with nanomaterials is very promising.

  • MATERIALS

    Improving the Linearized stresses resistance by Nano-Coating, Part-2

    Machines. Technologies. Materials., Vol. 14 (2020), Issue 1, pg(s) 44-54

    The part-2 research is a continuation of part-1 of using a simulation of Nano coating effect on linearized stresses resistance using Finite Element Analysis (FEA) software was carried out. The prime focus here was on exposing a thin Aluminum (Al7075-T6) walled spherical vessel to internal pressure before and after coating, this spherical vessel was coated by Nano- layer using two different materials such as Titanium (Ti) and Nickel (Ni) with thicknesses ranging (100 nm, 500 nm, and 900 nm). Then a comparison of the obtained results was made before and after coating. The results showed that the aluminum Al7075-T6 thin walled spherical vessel successfully coated with Titanium and Nickel separately using ANSYS software. In addition, the results have shown that 100,500 and 900 nm thickness Nickel coated aluminum 7075-T6 thin walled spherical vessel has a better improvement in linearized stresses resistance. These improvements in linearized stresses resistance were equal to 42% with Nickel coating in comparison with Titanium coating of thickness (100, 500 1nd 900 nm). The improvement of the linearized stress highest resistance is about 2.5% and 5% for Ti and Ni, respectively.

  • Improving the mechanical properties of conventional materials by nano-coating, Part-1

    Materials Science. Non-Equilibrium Phase Transformations., Vol. 5 (2019), Issue 4, pg(s) 112-119

    The use of an advanced nanotechnology coating process is absolutely helpful in immensely optimizing the efficiency of mechanical properties of materials such as: Longer service life, ability to tolerate greater loads, ease and low cost of maintenance, the environmental gain in the conservation of resources, improved response in kinetic systems, lower energy consumption, resistance to corrosion, low friction, use of low-cost base material, etc. Metal materials are usually subjected to various surface conditions that might cause stress, strain, deformation, and corrosion. Accordingly, Nano-coating technology is used to enhance the performance of mechanical properties in addition to reduce mechanical failure as much as possible. This research, a simulation of Nano coating effect on some mechanical properties performance using Finite Element Analysis (FEA) software was carried out. The prime focus here was on exposing a thin Aluminum (Al7075-T6) walled spherical vessel to internal pressure before and after coating, this spherical vessel was coated by nano- layer using two different materials such as Titanium (Ti) and Nickel (Ni) with thicknesses ranging (100 nm, 500 nm, and 900 nm). Then a comparison of the obtained results was made before and after coating, the results showed that the aluminum 7075-T6 thin walled spherical vessel was successfully coated with Titanium and Nickel separately using ANSYS software. Also the results showed that 900 nm Nickel coated aluminum 7075-T6 thin walled spherical vessel has a better improvement in mechanical properties. These improvements in mechanical properties were varied between 4.5225% to 20.724% depending on coating thickness and coating material. The Nickel coating has shown higher improvements in comparison with Titanium were observed.

  • Smart residential house saving energy system

    Industry 4.0, Vol. 4 (2019), Issue 2, pg(s) 72-77

    The special design process of an efficient residential house energy saving energy system is presented in this work. The main objectives are to achieve major energy cost reductions, providing safe house and reliable service. Thus, the essentials tool of the system will focus on providing useful information for the user by continuous monitoring and recording of the consumption behaviour of the operating appliances, also will raise early alarms in case of fault detection by high temperature monitoring. The outcomes of monitoring and analyzing the real power demand of group of typical house appliances is then used as a case-study for proposing further tools such as consumption forecast, tariff comparing and scheduling tools. Rule based system was designed for efficient and reliable operation control of house energy system with distributed energy source and storage units. Lab-View software package is used for implementation of most of the proposed algorithms which have been tested by variation of possible operating conditions. The results have shown that 22.75% energy savings can be achieved by applying the proposed tools and control strategies on typical home appliances. Modification of the system is recommended to include wide range of consumer’s types such as industrial and commercial sectors and to include more than one type of distributed energy sources.