International Scientific Journals
of Scientific Technical Union of Mechanical Engineering "Industry 4.0"

  • Journals
  • Submission
  • Events
  • About us
  • Contact

Author: Tokar A. A.

  • Effect of structure and texture on the mechanical characteristics of magnesium alloys processed by equal-channel angular pressing

    • Martynenko N.S.
    • Tokar A.A.
    • Serebryany V.N.
    • Prosvirnin D.V.
    • Terentiev V.F.
    • Raab G.I.
    • Dobatkin S.V.
    • Estrin Yu.Z.
    Materials Science. Non-Equilibrium Phase Transformations., Vol. 5 (2019), Issue 3, pg(s) 67-70
    • Abstract
    • View Article
    •  Article PDF

    ECAP was carried out with a gradual decrease in temperature and an increase in the number of passes on two medical magnesium alloys: WE43 (Mg-3.56%Y-2.20%Nd-0.47%Zr) and ZX10 (Mg-1.0%Zn-0.3%Ca). It was shown that ECAP leads to a significant refinement of the alloys structure. For ZX10 alloy, the average grain size after ECAP decreased from ~ 105 μm in the initial state to 8 ± 0.18 μm in the longitudinal section and to 4 ± 0.19 μm in the transverse one. For the WE43 alloy, the average grain size was changed from 70 μm to 0.69 ± 0.13 μm and the precipitation of particles of the Mg41Nd5 phase with an average size of 0.45 ± 0.18 μm was also discovered. At the same time, the grain refinement led to an increase in the strength characteristics of the both alloys (including fatigue strength), and increased prismatic slip activity (along with the formation of an inclined basal texture in ZX10 alloy) led to an increase in their ductility. The alloy structure formed during the ECAP process does not lead to a decreasing in resistance to chemical corrosion.

  • Increase in strength properties of low-carbon steels due to structural transformations at deformation by rotary swaging

    • Dobatkin S.V.
    • Rybalchenko O.V.
    • Tokar A.A.
    • Odessky P.D.
    • Lunev V.A.
    • Morozov M.M.
    • Yusupov V.S.
    Materials Science. Non-Equilibrium Phase Transformations., Vol. 5 (2019), Issue 1, pg(s) 8-10
    • Abstract
    • View Article
    •  Article PDF

    Mechanical properties of low-carbon St.20 and 07G2MFB steels after rotary swaging (RS) were studied. It was established that an increase in strain ratio and decrease in temperature increase strength but decrease plasticity. The ultimate tensile strength of 867-927 MPa was obtained in both steels after deformation at temperature of 400 °C with a true strain ratio of 2.3 at good ductility of 15-17%.

  • MATERIALS

    STRUCTURE, MECHANICAL PROPERTIES AND CORROSION RESISTANCE OF MAGNESIUM ALLOY WE43 AFTER EQUAL-CHANNEL ANGULAR PRESSING

    • Martynenko N. S.
    • Lukyanova E. A.
    • Tokar A. A.
    • Raab G. I.
    • Birbilis N.
    • Dobatkin S. V.
    • Estrin Yu. Z.
    Machines. Technologies. Materials., Vol. 11 (2017), Issue 8, pg(s) 413-416
    • Abstract
    • View Article
    •  Article PDF

    ECAP was conducted using route Bc with an angle of 120° between the die channels and a stepwise decrease of temperature from the initial 425 °C to 300 °C at the final, 12th pass. The cumulative equivalent strain the ECAP billets underwent was about 7.8. The structure examination showed that ultrafine-grained structure with the grain size of 0.69 – 1 μm was formed during ECAP process. In addition, particles of the phase Mg12Nd with an average size of 0.45 μm were formed. The refinement of the microstructure resulted in an improvement of the mechanical properties of the alloy. After ECAP, the strength characteristics of the alloy increased to the levels of ultimate tensile strength of 300 and yield strength of 260 MPa to be compared to those for the initial state (220 MPa and150 MPa, respectively). At the same time, the ductility increased to 13.2 %, which compares favourably with the initial value of 10.5 %. The ECAP process does not affect the resistance to electrochemical corrosion. The rate of chemical corrosion was found to be reduced owing to the ECAP processing.

  • STRUCTURE, MECHANICAL PROPERTIES AND CORROSION RESISTANCE OF MAGNESIUM ALLOY WE43 AFTER EQUAL-CHANNEL ANGULAR PRESSING

    • Martynenko N. S.
    • Lukyanova E. A.
    • Tokar A. A.
    • Raab G. I.
    • Birbilis N.
    • Dobatkin S. V.
    • Estrin Yu. Z.
    Materials Science. Non-Equilibrium Phase Transformations., Vol. 3 (2017), Issue 5, pg(s) 176-179
    • Abstract
    • View Article
    •  Article PDF

    ECAP was conducted using route Bc with an angle of 120° between the die channels and a stepwise decrease of temperature from the initial 425 °C to 300 °C at the final, 12th pass. The cumulative equivalent strain the ECAP billets underwent was about 7.8. The structure examination showed that ultrafine-grained structure with the grain size of 0.69 – 1 μm was formed during ECAP process. In addition, particles of the phase Mg12Nd with an average size of 0.45 μm were formed. The refinement of the microstructure resulted in an improvement of the mechanical properties of the alloy. After ECAP, the strength characteristics of the alloy increased to the levels of ultimate tensile strength of 300 and yield strength of 260 MPa to be compared to those for the initial state (220 MPa and150 MPa, respectively). At the same time, the ductility increased to 13.2 %, which compares favourably with the initial value of 10.5 %. The ECAP process does not affect the resistance to electrochemical corrosion. The rate of chemical corrosion was found to be reduced owing to the ECAP processing.

  • STRENGTH AND SERVICE PROPERTIES OF STAINLESS Cr-Ni-Ti STEEL AFTER EQUAL CHANNEL ANGULAR PRESSING IN THE TEMPERATURE RANGE 200-400°C

    • Rybalchenko O. V.
    • Tokar A. A.
    • Terent’ev V. F.
    • Prosvirnin D. V.
    • Raab G. I.
    • Dobatkin S. V.
    Materials Science. Non-Equilibrium Phase Transformations., Vol. 3 (2017), Issue 1, pg(s) 12-14
    • Abstract
    • View Article
    •  Article PDF

    The research paper presents the improvement on the mechanical and service properties of the austenitic stainless 0.07% C-17% Cr-9% Ni-0.7%-Ti steel in the fully austenitic state obtained by equal-channel angular pressing (ECAP) at the temperatures of 200 °C and 400 °C. Subgrain oriented structure in the Cr-Ni-Ti steel after ECAP significantly enhances the strength characteristics of steel at satisfactory plasticity. The fatigue limit of steel after ECAP at T = 200 ° C is higher than that after ECAP at T = 400 ° C, increasing in comparison with the initial state by 2.2 and 1.7 times, respectively. It was revealed that severe plastic deformation by ECAP increases the friction coefficient of the material by the 1.1 and 1.7 times at T = 200 ° C and 400 ° C, respectively. Despite this, the wear rate after ECAP at T = 200 ° C and 400 ° C decreases by 7 and 40 times, respectively, compared to initial state.

Congresses and conferences

  • VII International Scientific Conference
    "High Technologies. Business. Society"
    07.-10.03.2022 - Borovets, Bulgaria
  • XV International Conference for Young Researchers
    "Technical Sciences. Industrial Management"
    09.-12.03.2022 - Borovets, Bulgaria
  • XIX International Congress
    "Machinеs. Technolоgies. Materials"
    winter session
    09.-12.03.2022 - Borovets, Bulgaria
  • XXVIII International Scientific Technical Conference
    "Foundry"
    06.-08.04.2022 - Pleven, Bulgaria
  • X International Scientific Conference
    "Engineering. Technologies. Education. Safety"
    06.-09.06.2022 - Borovets, Bulgaria
  • XXX International Scientific Conference
    "trans&MOTAUTO"
    20.-23.06.2022 - Burgas, Bulgaria
  • VIII International Scientific Congress
    "Innovations"
    20.-23.06.2022 - Varna, Bulgaria
  • X International Scientific Congress
    "Agricultural Machinery"
    21.-25.06.2022 - Burgas, Bulgaria
  • VII International Scientific Conference
    "Industry 4.0"
    summer session
    22.-25.06.2022 - Varna, Bulgaria
  • VII International Scientific Conference
    "Conserving Soils and Water"
    24.-27.08.2022 - Borovets, Bulgaria
  • VIII International Scientific Conference
    "Materials Science. Non-Equilibrium Phase Transformations"
    05.-08.09.2022 - Varna, Bulgaria
  • XVII International Congress
    "Machines. Technologies. Materials"
    summer session
    07.-10.09.2022 - Varna, Bulgaria
  • VI International Scientific Conference on Security
    "Confsec"
    05.-08.12.2022 - Borovets, Bulgaria
  • VII International Scientific Conference
    "Industry 4.0"
    winter session
    07.-10.12.2022 - Borovets, Bulgaria
  • VI International Scientific Conference
    "Mathematical Modeling"
    07.-10.12.2022 - Borovets, Bulgaria

Scientific Technical Union of Mechanical Engineering "Industry-4.0"

108, Rakovski Str., 1000 Sofia, Bulgaria
tel. (+359 2) 987 72 90, tel./fax (+359 2) 986 22 40,
office@stumejournals.com