Aging of the ASC Whetlerite type gas mask carbons during storage and operation – overview
- 1 University of Chemical Technology and Metallurgy 8 Kl. Ohridski, 1756, Sofia, Bulgaria
Abstract
Based on the experience from the storage and operation of the gas masks canisters and filter canisters for collective protection, an overview has been made of one of the main disadvantages of the gas mask carbons used of type ASC Whetlerite, the declining of their protective properties as a result of the “aging’ process. The “aging’ factors of the gas mask carbons have been considered and mechanisms adopted for deactivation of their active phases. It has been demonstrated that the inclusion of ТЕDА and derivatives of pyridine in the active phase of the gas mask carbons of the type ASC Whetlerite, only partially solves the problem with the increase of the robustness against “aging” in the conditions of increased atmospheric humidity in operation and storage and for the overall solution, gas mask carbons need to be developed based on impregnation compositions other than of the ASC Whetlerite.
Keywords
References
- Rossin J., E. Petersen, D. Tevault, R. Lamontagne, L. Isaacson, Effects of environmental weathering on the properties of ASC Whetlerite, Carbon 29(2), 1991, 197-205
- Zhiqiang L., Z. Mingrong, C. Kuixue, The investigation for the deactivation mechanism of Cu-Cr impregnated carbon by XPS, Carbon 31(7), 1993, 1179-1184
- Nickolov R., PhD thesis, MTSRI, Sofia, 1988, and references therein
- Hammarstrom J.L., A. Sacco, Jr., Investigation of Hydrogen reactivity and its use as surface probe on high surface area CopperCromium-Silver impregnated charcoal, J. Catal. 100, 1986, 293-304
- Joseph A.R., X-ray Photoelectron Spectroscopy Surface Studies of Activated Carbon, CRCEC-TR-068, AD-A209 393 (1989); Kim Y.S., The 20th DOE/NRC Nuclear Air Cleaning Conference (1988)
- Ehrburger P., J. Lahaye, P. Dziedzinl, R. Fangeat, Effect of aging on the behavior of copper-chromium compounds supported on activated carbon, Carbon 29, 1991, 297-303
- Pytlewski L.L., Studies of ASC Whetlerite Reactivity, Edgewood Arsenal Contract Report, EC-CR-73010, AD774835 (1974)
- Hammarstrom J.L., A. Sacco, Jr., Investigation of deactivation mechanisms of ASC Whetlerite Charcoal, J. Catal. 112, 1988, 267-281
- Brown P.N., G.G. Jayson, G. Thompson, M.C. Wilkinson, Effect of ageing and moisture on the retention of hydrogen cyanide by impregnated activated charcoals, Carbon 27, 1989, 821-833
- Ross M.M., R.J. Colton, V.R. Deitz, The study of whetlerite surfaces by X-ray photoelectron spectroscopy, Carbon 27, 1989, 492-494
- Deitz V.R., J.N. Robinson, E.J. Poziomek, Electron transmission microscopy of charcoals impregnated with ammonium salts of Cu(II) and Cr(VI), Carbon 13, 1975, 181-187
- Ehrburger P., J.M. Henlin, J. Lahaye, Aging of cupric oxide supported on activated carbon, J. Catal. 100, 1986, 429-436
- Jankowska H., J. Choma, Aktualni stan wiedzy na temat wplywy procesu starzenia i innych czynnikow na wlasnosci sorbentow weglowych, Biuletiyn Informacyjny WIChiR 2(4), 1979, 56
- Dubinin M.M. Surface Oxidation and Adsorption Properties of the Active Supplements, in book: Surface chemical compounds and their role in the adsorption phenomenon, M.Publishing house MU, 1957, 5-11
- Дубинин М.М., Изв. АН СССР. Сер. хим. 1981, 9-12, in Russian
- Tomassi W., S. Neffe, Biul. WAT 22, 1973, 256
- Saciuk M., M. Pietrzykowski, B. Piekarska, A. Saratowicz, Wplyw przyspieszonego starzenia na zmiane parametrow struktury kapilarnej sorbentu chromowo-miezdziowego, Biuletyn Informacyjny WIChiR 2(4), 1979, 65-77
- Hjermsted H.P., R. Berg, Am. Ind. Hyg. Ass. J. 38, 1984, 211- 216
- Suzin Y., L.C. Buettner, C.A. LeDuc, Behavior of impregnated activated carbons heated to the point of oxidation, Carbon 36, 1998, 1557-1566
- M.M. Dubinin (Ed.), Basis of Protection Technique Against Chemical Warfare Agents, vol.1, VAKhZ "K.E. Voroshilov". Moscow, 1949, in Russian
- Grabenstetter R.J., E.F. Blacet, in: Military Problems with Aerosols and Nonpersistent Gases, vol. 1, 1946, ch.4, p.46
- Lahaye J., P. Ehrburger, R. Fangeat, Destruction of cyanogen chloride with 4 pyridine carboxilic acid impregnated activated carbon – I. The physical-chemistry of interaction, Carbon 25, 1987, 227-231
- Baker J.A., E.J. Poziomek, Effect of amine treatments on the chemical reactivity of Copper/Silver/Chromium Impregnated Charcoals, Carbon 13, 1975, 347-348
- Manoilova L., A. Hatzis, Iv. Spassova, R. Nickolov, Concept for the development of a new type carbon catalyst designed for protection against vapours of highly toxic substances, Machines Technologies Materials, IX(5), 2015, 27-30