INFORMATION SECURITY

AI models in software performance testing

  • 1 Lviv Polytechnic National University, Ukraine

Abstract

AI models are reshaping software performance testing. Machine Learning and Deep Learning algorithms automate test scenario generation, enable real-time monitoring, and predict performance issues. They facilitate dynamic load balancing, anomaly detection, testing automation, and offer performance optimization recommendations.

Keywords

References

  1. Laurence Moroney “AI and Machine Learning for Coders”, O'Reilly Media, ISBN-10 1492078190, ISBN-13 978-1492078197, 390 (2020).
  2. Ameisen, E “Building Machine Learning Powered Applications: Going from Idea to Product”, O'Reilly Media, ISBN- 10 149204511X, ISBN-13 978-1492045113, 257 (2020).
  3. “OpenAI's Research Papers and Documentation”. Accessed: Nov. 18, 2023 [Online]. Available: https://openai.com/research
  4. “Testim docs and references”. Accessed: Nov. 17, 2023 [Online]. Available: https://help.testim.io/docs
  5. “Sonar documentation and user guide”. Accessed: Nov.20, 2023 [Online]. Available: https://docs.sonarsource.com/sonarqube
  6. Andreas Happe, Jürgen Cito “Getting pwn'd by AI: Penetration Testing with Large Language Models.” arXiv, Aug. 17, 2023. Accessed: Nov. 20, 2023. [Online]. Available: https://arxiv.org/abs/2308.00121
  7. “OWASP top 10”. Accessed: Nov.21, 2023 [Online]. Available: https://owasp.org/www-project-top-ten/
  8. Nathalia Nascimento, Paulo Alencar, Donald Cowan “Comparing Software Developers with ChatGPT: An Empirical Investigation” arXiv, May. 25, 2023. Accessed: Nov. 20, 2023. [Online]. Available: https://arxiv.org/abs/2305.11837

Article full text

Download PDF