Methods and technologies of building an intelligent service for energy technology forecasting
- 1 Melentiev Energy Systems Institute SB RAS, Irkutsk National Research Technical University, Irkutsk, Russia
Abstract
This article reports the approach and software tools for decision-making support in forecasting the energy infrastructure development. The author considers the problem of searching for information from various open sources, technology of information searching, knowledge detection and classification. The author describes architecture of Intelligent information system. For experts this classification and integrated warehouse simplify search for the knowledge required
References
- The technological forecast of sectors development of the Russian fuel and energy complex for period till 2035. Ministry of energy RF, 2016, Available at http://minenergo.gov.ru/system/download-pdf/6365/66647.
- Cagnin C., Keenan M., Johnston R., Scapolo F., Barre R. “Future-oriented technology analysis. strategic intelligence for an innovative economy”, Springer, 2008, 170 p., DOI: 10.1007/978-3-540-68811-2.
- Nizhegorodtsev R. M., Ratner S. V., “Trends in the Development of Industrially Assimilated Renewable Energy: The Problem of Resource Restrictions”, Thermal Engineering, Springer, 2016, pp. 197-207, DOI:10.1134/S0040601516030083.
- Grmanova G., Laurinec P., Rozinajova V. et al., “Incremental Ensemble Learning for Electricity Load Forecasting”, Acta Polytech Hungarica, vol. 13, no. 2, 2016, pp. 97-117. DOI: 10.12700/APH.13.2. 2016.2.6.
- Yussupova N., George Kovacs G., Maxim Boyko M. et al., “Models and Methods for Quality Management Based on Artificial Intelligence Applications”, Acta Polytech Hungarica, vol. 13, no. 3, 2016, pp. 45-60. DOI: 10.12700/APH.13.3.2016.3.3.
- Chanchetti L. F., Diaz S. M. O., Leiva D. R. et al., “Technological Forecasting of Hydrogen Storage Materials using Patent Indicators”, International Journal of Hydrogen Energy, vol. 41, Elsevier, 2016, pp. 18301-18310, DOI:10.1016/j.ijhydene.2016.08. 137.