Implementation of INS for control of robots with a DC motor

  • 1 Faculty of Materials Science and Technology – Trnava Slovak University of Technology, the Slovak Republic

Abstract

This paper describes the activity system and the importance of INS with the possibility of implementation to the robot control. The contribution also introduces the execution of DC motor regulation utilized for the positioning of a rotary positioned arm. The motor control comprises the current regulation, angular velocity and the rotation of the motor shaft fixed to the arm regarding the required angular change course of the arm rotation. The regulation structure of the DC motor is carried out in MATLAB/Simulink program. The arm movement is investigated via the mathematical model and virtual dynamic model formed in MSC.ADAMS program.

Keywords

References

  1. Ţalman, M., ―Actuators,‖ STU Bratislava, 2003, ISBN 80-227-1835-1
  2. Schmid, D., ―Management and control for engineering and mechatronics,‖ Verlag EUROPA, ISBN 80-86706-10-9, 2005
  3. Bishop, H.R., ―The Mechatronics Handbook,‖ CRC Press, 2006 ISBN 0-8493-0066-5
  4. Heimann, B., W. Gerth, and K. Popp, „Mechatronik – Komponenten – Methoden – Beispiele,― HANSER, 2007, ISBN 978-3-446-40599-8
  5. Weber, W., „Industrieroboter,― HANSER, 2009, ISBN 978-3-446- 41031-2
  6. Barbour, N., J. Elwell, and R. Setterlund, ―Inertial instruments: Where to now,‖ ? , [cit. 2011-07-15]
  7. Nikitin, Y.R., and I.V. Abramov, ―Models of information processes of mechatronic systems diagnosis‖ University Review. – 2011. – V. 5. – № 1. – P. 12–16. – ISSN 1337-6047
  8. Titterton, D.H., and J.L. Weston, ―Strapdown inertial navigation technology (2nd Edition), : <http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=1241>, [cit. 2011-07-12]
  9. Šípoš, Ľ., Publikácia, ―Inertial navigation, Zvolen, 2011
  10. Nikitin, Y.R., ―Diagnostic models of mechatronic modules and analysis techniques,‖ Procceding of 2-d International Conference Advances in Mechatronics, December 2007, Brno, Czech Republic, ISBN 978-80-7231-314-3
  11. Soták, M., ―Integration navigation systems, Košice, 2006
  12. Boţek P., J. Šuriansky, 2011. Riadenie robota na báze inerciálneho systému. Ostrava: TU v Ostrave, Mechanical Series 1/2011. [cit: 2017- 04-20]. KEGA 3-7285-09, no. 1833
  13. Diaz E.M. et. al., 2015. Evaluation of AHRS Algorithms for Inertial Personal Localization in Industrial Environments. Seville [cit: 2017- 04-20]. ISBN 978-1-47997800-7
  14. Jizhou Lai, Pin LV, Jianye Liu and Bin Jiang, 2012. Noncommutativity Error Analysis of Strapdown Inertial Navigation System under the Vibration in UAVs. International Journal of Advanced Robotic Systems, 2012, Vol. 9, 136:2012
  15. LYNXMOTION, 2016. Robotic Arms AL5B. [online] [cit: 2017-04- 20]. Dostupné na internete: ‹http://www.lynxmotion.com/c-126-al5b.aspx›.
  16. Madgwick, S., 2013. Oscillatory-Motion-Tracking-With-x-IMU. [online] [cit: 2017-0427]. Dostupné na internete: ‹https://github.com/xioTechnologies/Oscillatory-MotionTrackingWith-x-IMU›.
  17. Mihalík, J., I. Gladišová, 2013. Číslicová filtrácia signálov (Návody na cvičenia). LČSOV FEI TU Košice, 2013, ISBN 978-80-553-1390-0
  18. NOVATEL, 2014. IMU Errors and Their Effects. . [online] [cit: 2017- 04-15]. Dostupné na internete: ‹http://www.novatel.com/assets/Documents/Bulletins/APN064.pdf›.
  19. POLOLU CORPORATION, 2016. Pololu Maestro Servo Controller User’s Guide. [online] [cit: 2017-04-20]. Dostupné na internete: ‹https://www.pololu.com/docs/0J40›.
  20. Quadri, S.A., o. Sidek, 2014. Error and Noise Analysis in an IMU using Kalman Filter. [online] Collaborative Microelectronic Design Excellence Centre (CEDEC), Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 2014. [cit: 2017-03-12]. Dostupné na internete: ‹http://www.sersc.org/journals/IJHIT/vol7_no3_2014/6.pdf›.
  21. Qassem, M. A., I. Abuhadrous, H. Elaydi, 2009. Modeling and Simulation of 5 DOF Educational Robot Arm. The 2nd IEEE International Conference on Advanced Computer Control, Shenyang. [online] [cit: 2017-04-20]. Dostupné na internete: ‹http://ieeexplore.ieee.org/document/5487136/›. ISBN 978-1-4244- 5848-6
  22. Qazizada M. E., E. Pivarčiová, 2016. Mobile Robot Controlling Possibilities of Inertial Navigation System. Procedia Engineering, Volume 149, 2016, Pages 404–413, doi: 10.1016/j.proeng.2016.06.685
  23. Soták M., 2008. Application of wavelet analysis to inertial measurements. Scientific papers: Science & Military 2/2008. [cit: 2017-04-20]. SPP–852_08-RO02_RU21-240
  24. Tianmiao Wang, CHaolei Wang, Jianhong Liang, Yang CHen, Yicheng Zhang, 2013. Vision-Aided Inertial Navigation for Small Unmanned Aerial Vehicles in GPS-Denied Environments. International Journal of Advanced Robotic Systems, 2013, Vol. 10, 276:2013
  25. Turygin Y., Boţek P., Nikitin Y. R., Sosnovich E. V., Abramov, A. I., 2016. Enhancing the reliability of mobile robots control process via reverse validation. International Journal of Advanced Robotic Systems, 13. p. 1–8.
  26. X-IO TECHNOLOGIES, 2013. x-IMU User Manual 5.2. [online][PDF] Great Britain 2013. [cit: 2017-04-20]. Dostupné na internete: ‹http://x-io.co.uk/downloads/x-IMU-UserManual-v5.2.pdf›.
  27. Titterton, D.H., Weston, J.L. (2004) Strapdown Inertial Navigation Technology. Cited 2068 times. Institution of Electrical Engineers, Reston VA
  28. Jekeli, C. (2001) Inertial Navigation Systems with Geodetic Applications. Cited 365 times. Walter de Gruyter GmbH & Co, Berlin
  29. Groves, P.D. (2008) Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. Cited 1021 times. Artech house remote sensing Library, London
  30. Bar-Itzhack, I.Y., Berman, N. Control theoretic approach to inertial navigation systems (1988) Journal of Guidance, Control, and Dynamics, 11 (3), pp. 237-245. Cited 211 times. doi: 10.2514/3.20299
  31. Silva, F.O., Hemerly, E.M., Leite Filho, W.C. On the error state selection for stationary sins alignment and calibration kalman filters— Part II: Observability/estimability analysis
  32. Jurkov, A.S., Cloutier, J., Pecht, E., Mintchev, M.P. Experimental feasibility of the in-drilling alignment method for inertial navigation in measurement-while-drilling (2011) IEEE Transactions on Instrumentation and Measurement, 60 (3), art. no. 5559446, pp. 1080- 1090. Cited 31 times. doi: 10.1109/TIM.2010.2064631
  33. Pecht, E., Mintchev, M.P. Observability analysis for INS alignment in horizontal drilling (2007) IEEE Transactions on Instrumentation and Measurement, 56 (5), pp. 1935-1945. doi: 10.1109/TIM.2007.904485
  34. Pecht, E., Mintchev, M.P. Modeling of observability during in-drilling alignment for horizontal directional drilling (2007) IEEE Transactions on Instrumentation and Measurement, 56 (5), pp. 1946-1954. Cited 18 times. doi: 10.1109/TIM.2007.903641
  35. Karumuri, S.R. Review on break through mems technology
  36. (2011) Arch. Phys. Res., 2 (4), pp. 158-165.
  37. Du, S., Sun, W., Gao, Y. MEMS IMU error mitigation using rotation modulation technique (2016) Sensors (Switzerland), 16 (12), art. no. 2017. http://www.mdpi.com/1424-8220/16/12/2017/pdf
  38. Shin, E. (2005) Estimation techniques for low-cost inertial Navigation.
  39. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada
  40. Wu, D., Cao, D., Wang, T., Fang, Y., Fei, J. Adaptive Neural LMIBased H-Infinity Control for MEMS Gyroscope (2016) IEEE Access, 4, art. no. 7593254, pp. 6624-6630.
  41. Carrera, J.L. (2016) A real-time indoor tracking system by fusing inertial sensor, radio signal and floor plan, pp. 1-8. Proc 2016 Int Conf on Indoor Positioning and Indoor Navigation (IPIN)
  42. Yazdkhasti, S., Sasiadek, J., Ulrich, S. (2016) Performance enhancement for gps/ins fusion by using a fuzzy adaptive unscented kalman filter Proc. 21st Int. Conf. on Methods and Models in Automation and Robotics (MMAR)
  43. Nassar, S., El-Sheimy, N. A combined algorithm of improving INS error modeling and sensor measurements for accurate INS/GPS navigation (2006) GPS Solutions, 10 (1), pp. 29-39.
  44. Zhou, Z., Li, Y., Zhang, J., Rizos, C. Integrated navigation system for a low-cost quadrotor aerial vehicle in the presence of rotor influences
  45. (2017) Journal of Surveying Engineering, 143 (1), art. no. 05016006.
  46. Zhou, Z., Li, Y., Liu, J., Li, G. Equality constrained robust measurement fusion for adaptive kalman-filter-based heterogeneous multi-sensor navigation (2013) IEEE Transactions on Aerospace and Electronic Systems, 49 (4), art. no. 6621807, pp. 2146-2157.
  47. Sun, W., Wang, D., Xu, L., Xu, L. MEMS-based rotary strapdown inertial navigation system (2013) Measurement: Journal of the International Measurement Confederation, 46 (8), pp. 2585-2596.
  48. Goshen-Meskin, D., Bar-Itzhack, I.Y. Observability Analysis of Piecewise Constant Systems Part II: Application to Inertial Navigation In-Flight Alignment (1992) IEEE Transactions on Aerospace and Electronic Systems, 28 (4), pp. 1068-1075
  49. Kang, T., Fang, J., Wang, W. Quaternion-optimization-based in-flight alignment approach for airborne POS (2012) IEEE Transactions on Instrumentation and Measurement, 61 (11), art. no. 6246704, pp. 2916- 2923.
  50. Yu, M.-J., Lee, J.G., Park, C.G. Nonlinear robust observer design for strapdown INS in-flight alignment (2004) IEEE Transactions on Aerospace and Electronic Systems, 40 (3), pp. 797-807
  51. Jiang, Y.F., Un, Y.P. Error Estimation of INS Ground Alignment through observability Analysis (1992) IEEE Transactions on Aerospace and Electronic Systems, 28 (1), pp. 92-97.
  52. Ramanandan, A., Chen, A., Farrell, J.A. Inertial navigation aiding by stationary updates (2012) IEEE Transactions on Intelligent Transportation Systems, 13 (1), art. no. 6060912, pp. 235-248.

Article full text

Download PDF