• 1 Faculty of Mechanics and Energy – Ukrainian State University of Railway Transport, Ukraine


An important requirement of digital electronic devices is the comprehensive provision of electromagnetic compatibility. In particular, it is necessary for electrical, electronic and radio equipment to ensure a sufficient level of noise immunity when exposed to microsecond pulse interference. The international standard IEC 61000-4-5 regulates the testing of equipment for microsecond impulse noise. Carrying out such physical tests is quite complicated and requires expensive equipment. The article proposes computer simulation of testing electronic devices in accordance with the requirements of IEC 61000-4-5.



  1. Shadare A. E., Sadiku M. N., Musa S. M. Electromagnetic compatibility issues in critical smart grid infrastructure. IEEE Electromagnetic Compatibility Magazine. 2017. Vol. 6, No. 4. P. 63–70. DOI:10.1109/memc.0.8272283.
  2. Pareschi F., Setti G., Rovatti R., Frattini G. Practical optimization of EMI reduction in spread spectrum clock generators with application to switching DC/DC converters. IEEE Trans. Power Electron. 2014. Vol. 29, No. 9. P. 4646–4657. DOI: 10.1109/TPEL.2013.2286258.
  3. Yu Q. Applications on flexible AC transmission system (FACTS) technology in Smart Grid and its EMC impact. International Symposium on Electromagnetic Compatibility. 2014. P. 392–397. DOI: 10.1109/ISEMC.2014.6899003.
  4. Xu J., Nie Z., Zhu J., Zhang Y., Li H. Random Carrier Modulation Technique for Dispersing Harmonics. 8th International Congress on Image and Signal Processing. 2015. P. 1604–1608. DOI:10.1109/cisp.2015.7408141.
  5. Plakhtii O., Nerubatskyi V., Ryshchenko I., Zinchenko O., Tykhonravov S., Hordiienko D. Determining additional power losses in the electricity supply systems due to current's higher harmonics. Eastern-European Journal of Enterprise Technologies, 2019. Vol. 1, No. 8 (97). P. 6–13. DOI: 10.15587/1729- 4061.2019.155672.
  6. Nerubatskyi V., Plakhtii O., Kotlyarov V. Analysis of topologies of active four-quadrant rectifiers for implementing the INDUSTRY 4.0 principles in traffic power supply systems. International scientific journal «INDUSTRY 4.0». 2019. Vol. 4, Issue 3. P. 106–109.
  7. Kabalci Y. A survey on smart metering and smart grid communication. Renewable and Sustainable Energy Reviews. 2016. Vol. 57. P. 302–318. DOI: 10.1016/j.rser.2015.12.114.
  8. Akimov O. I., Nerubatskya A. V. Protection of overhead lines from lightning surges. Information and Control Systems at Railway Transport. 2013. No. 3. P. 12–15.
  9. Barai G. R., Krishnan S., Venkatesh B. Smart metering and functionalities of smart meters in smart grid – a review. IEEE Electrical Power and Energy Conference (EPEC). 2015. P. 138– 145. DOI:10.1109/epec.2015.7379940.
  10. Plakhtii O., Nerubatskyi V. Analyses of energy efficiency of interleaving in active voltage-source rectifier. 2018 IEEE 3rd International Conference on Intelligent Energy and Power Systems (IEPS). P. 253–258. DOI: 10.1109/IEPS.2018.8559514.
  11. Lloret J., Tomas J., Canovas A., Parra L. An Integrated IoT Architecture for Smart Metering. IEEE Communications Magazine. 2016. Vol. 54, Issue 12. P. 50–57. DOI: 10.1109/MCOM.2016. 1600647CM.
  12. Nerubatsky V. P., Plakhtiy O. A., Gladka A. V. EMC improvment research of three-phase active rectifiers with power factor correction in regenerative mode. Collection of scientific works of the Ukrainian State University of Railway Transport. 2018. Issue 178. P. 21–28. DOI: 10.18664/1994- 7852.178.2018.138906.
  13. Pittolo A., Tonello A. M. Physical layer security in power line communication networks: an emerging scenario. Other than wireless. IET Communications. 2014. Vol. 8, No. 8. P. 1239–1247. DOI: 10.1049/ietcom.2013.0472.
  14. Prakash K., Lallu A., Islam F., Mamun K. Review of power system distribution network architecture. Proc. of the 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). 2016. P. 124–130. DOI: 10.1109/APWC-on-CSE.2016.030.

Article full text

Download PDF