The impact of digital civilization on society and the (consumer) identity of individuals

Slijepcevic Dusanka1; Dabrowska-Prokopowska Ewa2; Vejnovic Dusko3
Faculty of Political Sciences – University of Banja Luka, Bosnia and Herzegovina1, Institute of Sociology, Bialystok, Poland2, Faculty of Security Sciences – University of Banja Luka3
dusanka.slijepcevic@fpn.unibl.org, ewa.dabrowska@uwb.edu.pl, dusko.vejnovic@fbn.unibl.org

Abstract: The research problem refers to the consequences of the 3rd industrial, digital, revolution on society and individuals and their (consumer) identity: digital intergenerational gap, technological dependence, technological influence on the behavior and (consumer) identity of individuals and the authoritarian (demotivational) effects of contemporary consumerism. The research subject is the influence of "high-tech culture" [21] on society and individuals and their (consumer) identity. The main hypothesis is that the impact of digital civilization and culture on society and individuals and their (consumer) identity is ambivalent (de/-humanistic). The scientific goals are: 1) description of the polyvalent impact of digital civilization and culture and computer communication, as well as technological accessories for communication; 2) understanding the digital generation gap and the analogy between (virtual) social groups: "digital natives" and "digital immigrants" [21] and "netocrats and consumtary" [8], as contemporary consumers; 3) scientific explanation of the authoritarian and emancipatory effects of high-tech culture and consumerism on contemporary consumers; 4) scientific prediction of new, digital, slave ownership, as a consequence of the development of robotics within the framework of the 4th industrial revolution. The social goals are: expanding knowledge about digital civilization and culture and 2) pragmatic explanation of the dis-functional consequences of the 3rd and 4th industrial revolution. Desk research [9; 5] is used as a method of collecting and analyzing data from previous research, along with methods of observation, deduction, induction, abstraction, concretization and synthesis. Results are achieved goals.

Keywords: DIGITAL CIVILIZATION; DIGITAL CULTURE; (CONSUMER) IDENTITY; NETOCRATS; CONSUMTARY

1. Introduction

"People have always been much better at inventing new tools than using them wisely" [7, p. 26].

The invention of the steam engine (1769), at the end of the 18th century, marked the beginning of the 1st industrial revolution in the textile industry in England. Water and steam were used to mechanize production. In the second half of the 19th century, in America, the 2nd industrial revolution followed, thanks to the invention of the alternating polyphase system (1887) by the genius scientist of Serbian origin and worldwide importance, Nikola Tesla, and the use of electricity, but also oil, as the main energy sources. Electric power was used for mass production. With the invention of the alternating generator, the high-voltage transformer and the asynchronous motor, Tesla created the conditions for the mass production. With the invention of communication technology - ICT), which would change the way of communication; 2) understanding the digital generation gap and the analogy between (virtual) social groups: "digital natives" and "digital immigrants" [21] and "netocrats and consumtary" [8], as contemporary consumers; 4) scientific prediction of new, digital, slave ownership, as a consequence of the development of robotics within the framework of the 4th industrial revolution. The social goals are: expanding knowledge about digital civilization and culture and 2) pragmatic explanation of the dis-functional consequences of the 3rd and 4th industrial revolution. Desk research [9; 5] is used as a method of collecting and analyzing data from previous research, along with methods of observation, deduction, induction, abstraction, concretization and synthesis. Results are achieved goals.

The impact of digital civilization on society and the (consumer) identity of individuals

Slijepcevic Dusanka1; Dabrowska-Prokopowska Ewa2; Vejnovic Dusko3
Faculty of Political Sciences – University of Banja Luka, Bosnia and Herzegovina1, Institute of Sociology, Bialystok, Poland2, Faculty of Security Sciences – University of Banja Luka3
dusanka.slijepcevic@fpn.unibl.org, ewa.dabrowska@uwb.edu.pl, dusko.vejnovic@fbn.unibl.org

Abstract: The research problem refers to the consequences of the 3rd industrial, digital, revolution on society and individuals and their (consumer) identity: digital intergenerational gap, technological dependence, technological influence on the behavior and (consumer) identity of individuals and the authoritarian (demotivational) effects of contemporary consumerism. The research subject is the influence of "high-tech culture" [21] on society and individuals and their (consumer) identity. The main hypothesis is that the impact of digital civilization and culture on society and individuals and their (consumer) identity is ambivalent (de/-humanistic). The scientific goals are: 1) description of the polyvalent impact of digital civilization and culture and computer communication, as well as technological accessories for communication; 2) understanding the digital generation gap and the analogy between (virtual) social groups: "digital natives" and "digital immigrants" [21] and "netocrats and consumtary" [8], as contemporary consumers; 3) scientific explanation of the authoritarian and emancipatory effects of high-tech culture and consumerism on contemporary consumers; 4) scientific prediction of new, digital, slave ownership, as a consequence of the development of robotics within the framework of the 4th industrial revolution. The social goals are: expanding knowledge about digital civilization and culture and 2) pragmatic explanation of the dis-functional consequences of the 3rd and 4th industrial revolution. Desk research [9; 5] is used as a method of collecting and analyzing data from previous research, along with methods of observation, deduction, induction, abstraction, concretization and synthesis. Results are achieved goals.

Keywords: DIGITAL CIVILIZATION; DIGITAL CULTURE; (CONSUMER) IDENTITY; NETOCRATS; CONSUMTARY

1. Introduction

“People have always been much better at inventing new tools than using them wisely” [7, p. 26].

The invention of the steam engine (1769), at the end of the 18th century, marked the beginning of the 1st industrial revolution in the textile industry in England. Water and steam were used to mechanize production. In the second half of the 19th century, in America, the 2nd industrial revolution followed, thanks to the invention of the alternating polyphase system (1887) by the genius scientist of Serbian origin and worldwide importance, Nikola Tesla, and the use of electricity, but also oil, as the main energy sources. Electric power was used for mass production. With the invention of the alternating generator, the high-voltage transformer and the asynchronous motor, Tesla created the conditions for the transmission of electricity over long distances, allowing factories to no longer have to be built close to the power source, but to be built in places where there is a workforce. The first and second industrial revolutions can also be called high-carbon revolutions, due to the high emissions of carbon dioxide (CO2) because most of the electricity was produced and is produced from fossil fuels (coal, oil and natural gas), causing climate change.

Hence, the next, 3rd industrial revolution, better known as digital, which followed in the 1980s, and uses electronics and information and communication technologies (ICT developed after an invention of the Internet in 1969) for production automation. This revolution takes place under the sign of the demand to be low-carbon, in order to re-establish the balance of the ecosystem, based on digital technologies (computers and information and communication technology - ICT), which would change the way of obtaining and producing energy and enable the realization of sustainable communities. And N. Tesla had a solution for that (according to Abramovic), in the form of free energy, with which he experimented via the Wardenclyff tower. Huge energy potentials (electricity) from the ionosphere can be recycled over the earth, in a resonant way, which would supply the earth with electricity, which we could draw from the earth through antennas. The electricity on the apparatus does the necessary work and returns again, in electromagnetic form, to the electro-physical system of planet Earth. That would be clean energy because it has no conversion, that is, because it is not converted into some other energy, so it does not leave harmful consequences, such as radioactive waste. This is in accordance with green transition and green consumerism, which refers to "consumer activities that should be accompanied by environmental awareness about the importance of preserving public goods (primarily natural) from which everyone benefits" [17, p. 48].

The term 4th industrial revolution was first used by Klaus Schwab, director of the World Economic Forum, in 2015, talking about merging technologies to erase the boundaries between the physical, digital and biological spheres. The removal of barriers between people and machines can be made with the help of artificial intelligence, nanotechnology, IoT (Internet of things), robotics, 3D printers, biotechnology, smart cities and similar technologies in development. According to Georg Spöttl and Lars Windelband, “there are many definitions of ‘Industry 4.0’.” A comprehensive one is that ‘Industry 4.0’ is the current trend towards automation and data exchange in manufacturing technologies which are based on digital technology. It includes ‘Cyber-Physical Systems’ (CPS), the Internet of Things (IoT) and cloud computing, and has an impact on all economic sectors” [22, p. 29].

2. Theory and Methods

Jean-Francois Lyotard presented a theory about the development of post-industrial society and postmodern culture at the end of the 1950s (after the construction of computer in 1946), based on the development of science, technology and changes in language ("language games") [6]. „Game is praxis, an activity which contributes to the feeling of satisfaction ond joy” [19, p. 185; for more see: 18], and includes use of habitus and of capital in the field i.e. in the market. Organizing social life in the postmodern context is done through language games, which are used as a move or a means of legitimizing and/or justifying the truth and correctness of people’s statements and actions, with the aim of winning. Language games are performed through narratives, i.e. telling stories, because this is how the rules and norms on which the social order is based are transmitted (socialization function). Under the influence of the Enlightenment, narrative language games were replaced by scientific denotive games (the search for truth). That is why in modern society statements (and actions) are subjected to rational argumentation, proof and scrutiny by others, in order to determine whether the statement should be accepted or rejected.

Science is not able to completely reject narratives, because of its purposiveness (society-oriented). Hence, it is based on meta-narratives, which give meaning to other narratives, providing the purpose (justification) of scientific research. Some of such meta-narratives are about human emancipation and self-actualization, and about social progress, about an ideal society ("classless society", "Aryan society") and the like. However, with the advent of postmodernism, the scientific denotive language games are abandoned, in favor of technical language games, which are performed according to the principle of usefulness and efficiency. Hence, the technical means by which something can be achieved are important, not the final goals of human activity. "For example, at universities, researchers ask what is the benefit of something, not whether it is true. Research is directed into the production of marketable knowledge” [6, p. 1071].

60 YEAR VIII, ISSUE 2, P. P. 60-64 (2023)
In postmodernism, computer technology has become the main productive force [6, 3, p. 111]. ICT have become the center of social life, because they are used to monitor and punish, or control knowledge, as the main source of power, in relation to territories. "Knowledge is no longer an end in itself, but something that can be bought and sold, something that can even be fought for. For Lyotard, postmodern society is based on the production and exchange of marketable knowledge" [6, p. 1071]. The focus is on the question of the efficiency of the products of human labor and their ability to sell (properties of goods).

Lyotard sees a lot of advantages in postmodernism (pluralism, creative diversity and tolerance), considering that the modernist search for truth led to the terror of totalitarian regimes (repression under Hitler in Nazi Germany and under Stalin in the communist USSR). The advantage of the new technology as binary” [20, p. 12].

Furthermore, globalization is one of the causes of fragmented identities, since advances in communications and "global advertising of styles, places and images can lead to the effect of a 'cultural supermarket' (a wide array of identities), where people no longer have to build identities based on the place they live in [according to Hall in: 6, p. 924]. Thus, "global consumerism can also lead to the increasing homogenization, or similarity between people" [6, p. 924].

The research problem, the subject of research, the main hypothesis, the scientific and social goals, as well as methods and results are given in the methodological framework of the paper in the paper abstract.

3. Research results and discussion

Research goal 1)

Since the advent of ICT, a new form of groups has emerged on the Internet - "virtual groups" [24, p. 230], in which people engage in activities (chatting, blogging, playing games, etc.) with people they will probably never meet, live. Participation in these groups inevitably affects (socially, politically and economically) individuals in such a way that "such a group can often become the main reference group that directs the behavior of individuals from afar" [24, p. 230]. Those groups become role models for behavioral patterns, that is, the so-called "in groups", which it is fashionable and desirable to become a member of.

Our society seems to be divided into two cultural groups: digital natives, who were born into the world of computers, and digital immigrants, who became familiar with computer technology as adults" [21, p. 44]. Digital natives consist of two subgroups: millennials (born between 1981 and 2000) and Generation X (born between 1965 and 1980), while digital immigrants consist of a subgroup of baby boomers (born between 1946 and 1964) and seniors. Seniors are a traditional group and generally have the hardest time with technology. In some generational typologies, there is also a so called “generation Z (Zed)”, which follows the millennials.

Virtual groups use computer-mediated communication for occasional or permanent online meetings, with the help of technological accessories: desktop and laptop computers, e-mails, instant messages, browsers, mobile phones, tablets, PDA handheld devices, blogs, Internet telephony and video conferencing, social networks, etc. It is a communication based on abbreviations, such as: :-(face to face), :-(farward), :((hugs and kisses) and emoticons, such as: :) (happy), :-((sad), :D (smiles), thus distinguishing it from direct communication. According to Smol & Vorgan [21], the term emoticon is short for "emotional icon" and is a text-based symbol used to represent feelings and facial expressions, and is read by mentally or physically turning the page for 20 degrees clockwise.

Research goal 2)

One of the world's greatest innovators in science and technology (according to Scientific American Journal) and director of the Memory and Aging Research Center at the Semel Institute for Neuroscience and Human Behavior, Dr. Gary Small, in his scientific monograph "The Internet Brain" [21], presents the thesis that high-tech innovations are changing the network of neurons in the brains of young people, who are well versed in technology, but also the way they develop and function, thus turning the normal generation gap into something new - a growing divide, which can be called, "the gap between brains".

It is important to point out that one can talk about brains that are connected to the Internet, but that one cannot talk about a digital brain since the brain does not work digitally because it is an analog processor (according to Abramovic). Also, all laws work by analogy and not digitally, so there is no scientific discovery in a digital way. Digital devices only make it possible to arrive at a solution faster, but in an analog way.

The brain gap implies much more than an intergenerational difference in tastes and values. It points to a real evolutionary change within today's young minds - a change in the system of neural circuits, which is fundamentally different from the system of their mothers and fathers, grandparents and grandfathers” [21, p. 45]. "Today's Obsession with Computer Technology and Video Games among many teenagers interferes with proper frontale lobe development, impairs their social skills, and impairs their reasoning ability" [21, p. 55]. The experience of using digital technologies by adults, children and teenagers differs, as does their understanding of that experience. "While adults knew the world before the Internet, children and adolescents grew up with a range of digital technologies that were used to educate them, build friendships and learn about their identity” [25, p. 99]. According to Smol & Vorgan [21], today's young generations are rejecting parental authority, creating a new socio-political network, their own cyber manners, language and work ethic. They “hold the cyber world in their hands. They easily perform simultaneous tasks and perform parallel processes, while access to visual and audio stimulation has programmed their brains to crave instant gratification” [21, p. 45].
"Digital natives tend to have shorter attention spans, especially when it comes to traditional forms of learning" [21, p. 45].

In informationalism, the new social forces are netocracy and consuntarity, leading to an increase of (high-tech) consumers and of identify. The difference in their consumption models is that the superior class sets the conditions and manages the desires of the inferior class, encouraging them. "Netocracy" and "consuntarity" are terms elaborated by Alexander Bard and Jan Soderqvist in the book Netocracy - The New Power Elite and Life After Capitalism (2003), in order to indicate the future accumulation of power in the positions of those who control the information society, which are now new global elite (netocracy). Netocrats will replace capitalists and traditional principles of capitalism with new rules of the economic game in their favor, since they represent a global upper class, whose power is based on networking skills and technological privilege. Netocracy will be formed by people with social skills and inclinations towards using new technologies, manipulating and distributing information, while those who do not have similar "knowledge" and "skills" will form the lowest social class - consumtary [according to Bard & Soderqvist In: 8].

Research goal 3

Some representatives of the Frankfurt School (Marcuse) made assumptions about consumerism as a form of social control, which essentially makes even a democratic society authoritarian, a "system of rigid uniformity", considering that its citizens are apparently free only in the dominant activity - consumption, as a result of which they behave irrationally, which is confirmed by the fact that with such activity the individual supports the consumer economy and becomes a tool of it, which imposes on him guilty or repressive needs.

Although netocracy comes instead of democracy, all this implicitly points to the double potential of consumerism - authoritarian and emancipatory and their (dys)functional role. Considering that, it is legitimate to ask the question - What effects does consumerism produce in practice? Does consumerism enable participation in an open, global society, and does it possibly have some dehumanizing implications for human contacts in the era of technically mediated communication, digital economy and reality in general? One of the possible answers is represented by the following table (Table No. 1).

<table>
<thead>
<tr>
<th>Table No. 1 Contemporary effects of consumerism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contemporary effects of consumerism</td>
</tr>
<tr>
<td>Authoritarian (demotivational)</td>
</tr>
<tr>
<td>Algorithmization of behavior, work and consumerism habits, social and cultural preferences of individuals and their normalization and standardization;</td>
</tr>
<tr>
<td>The threat of 'digital Taylorism' and the emergence of a class of digital galleey workers (crowdsourcing);</td>
</tr>
<tr>
<td>Promoting the "good life"; through the purchase of things, as a limited view of the world, which does not offer opportunities to consider alternative ways of life, and which disable individuals from making their own decisions about their way of life;</td>
</tr>
<tr>
<td>Aggravation of global problems, especially in the domain of the natural environment (climate change and unsustainable use of natural resources) and social justice (poverty and violation of human rights); unsustainable consumption of limited natural resources, beyond the limits of the planet's biocapacity;</td>
</tr>
<tr>
<td>Creating a false consciousness of supposed happiness, brought about by the role of consumer and one-dimensional viewing of people exclusively as consumers, who want to maximize their share of goods, but not as human beings, with various higher needs for love, relationships, cooperation, and making their own choices in life; creating a system that does not satisfy needs but forces people to live lives they would not otherwise choose, that is, to simulate a certain identity, causing themselves anxiety and stress;</td>
</tr>
<tr>
<td>Excessive desire for things leads to the search for them, taking away people's energy, time, money; the gadget race (race for devices) encourages continuous consumption, and thus the production of new technology, which causes serious social problems (ecological pollution of the environment due to inappropriate disposal and disposal of technological waste, especially in developing countries); greater spending of time on consumer activities at the expense of enthusiasm for learning about the world and broadening horizons;</td>
</tr>
<tr>
<td>Constant comparison with others produces dissatisfaction with what one has, making individuals more active consumers in the pursuit of more possessions and the pressure to earn more money to pay for such a lifestyle brings more costs than benefits;</td>
</tr>
<tr>
<td>Shaping the identity of individuals, by looking for non-human (or value-based) interests in people, which leaves less time for being interested in other people;</td>
</tr>
<tr>
<td>Advertising, sale and placement of products as an unpleasant disturbance of peace and personal space of people; aggressive exercise of power over individuals (mental aggression), through convincing that it is necessary to own certain products, while causing a false feeling of dissatisfaction if the object of desire is not obtained;</td>
</tr>
</tbody>
</table>

Kantian (motivational)

The possibility of social emancipation, by changing the economic model towards common and general goods ('post-capitalist societies');

The connection of the world based on the principle of open systems and the economy of knowledge;

Promoting human happiness and well-being, by providing basic material (food, drink, shelter and money) and non-material resources (life skills to achieve self-actualization) for an easy and happy desired lifestyle;

Limiting the planet's resources and expanding the boundaries of social justice;

Promoting special conditions that favor the flourishing of society and the individual: stronger local community, greater equality, education to encourage well-being and interest for children to grow up without exposure to the effects of advertising under the age of 16;

New possibilities of auto production, micro-factories; integration of production and services; intelligent factories, energy systems, mobility, transport and 'optimized' management; innovative products and services, extending the durability of mobile applications, which facilitate functioning in everyday life;

Enhancing the capacity of the human body and the human race (implanting microchips, which serve as credit cards, car or apartment keys, train tickets, to reduce an individual's uncertainty about where their wallet is or whether they have withdrawn enough money; the chip as a timely cancer detector and healer).

Source: [16, p. 123 – 124]

The effects of high-tech culture can also be humanistic and dehumanistic, as shown by Livingstone's (2009) research on the effects of digital technologies on young people. The research concluded that the use of the Internet by young people can be both harmful and empowering, depending on what the Internet is used for.

Potential opportunities of the Internet include: access to global information and educational resources; social networking among friends; games and entertainment; creating user-generated content; expression of identity; community involvement/activism and civic and political participation; technological expertise and literacy; career advancement/employment; personal/health/sex advice; specialized fan groups and forums; shared experience with distant reference groups and role models [according to Livingstone in: 25, p. 102].

Potential risks include: illegal content; stalking pedophiles; encountering extremism or sexual violence; other harmful offensive content; hatred and racism; advertising and covert marketing; biased information or misinformation; misuse of personal data; cyberbullying/harassment; gambling, identity theft, financial fraud; self-harm; violation and abuse of privacy; exposure to illegal activities [according to Livingstone in: 25, p. 102].

Research goal 4

The 4th industrial revolution [for more see: 14] will result in digital slavery, as the ownership of robots (new work slaves) due to the development of robots, as tools for work, especially in the sphere of heavy physical and similar jobs, which call into question human dignity and health (mining jobs, cleaning jobs, high-risk jobs, etc.). Therefore, there will be no need for people to be slaves to work, so the typical historical institution of slavery will lose its justification and meaning of existence in the contemporary constellation of social relations, under the influence of the 4th industrial revolution.

Even the ancient thinker Aristotle justified slavery, because "one of the basic premises of Aristotle's ethics is that a man who needs to develop true virtues must have an abundance of leisure at
his disposal, and that this can only be achieved if someone else does” [23, p. 61]. Hence, Oscar Wilde, in the work "The Soul of Man in Socialism", emphasizes the work of machines as a technological solution and an alternative to historical forms of slavery [23].

Thanks to N. Tesla, and his patent for remote control (method and device for the mechanism of controlling moving vessels or vehicles), from 1898, feedback became the basis of robotics, and the ship that N. Tesla presented and remotely controlled by radio waves, at the electrical exhibition in Madison Square Garden - the first robot. "Considering that robots had many uses besides war, he believed that their greatest role would be in the peaceful service of mankind” [2, p. 438].

Image No. 1 Tesla’s patent from 1989 - remote control boat.

Source: [11; 12] (20/12/2022)

Therefore, N. Tesla saved humanity by enabling robotics, which will save people from inhuman jobs, thanks to his ideas and ingenious creation: "Progressive development of man ... is the most important product of his creative brain. Its ultimate purpose is the complete mastery of the mind over the material world, harnessing important product of his creative brain. Its ultimate purpose is the progressive development of man ... is the most important product of his creative brain. Its ultimate purpose is the complete mastery of the mind over the material world, harnessing the forces of nature for human needs. This is the difficult task of the inventor, which is often misunderstood and unrewarded (according to Tesla in: 4, p. 158).

British sociologist A. Giddens, within his theory of reflexive modernity, expresses Tesla’s idea of remote control through the concept of distancing. It is a phenomenon that makes it possible to influence any segment of social life, regardless of its distance in time and space (eg. a nuclear submarine of destructive power, thousands of kilometers away from its controllers) [according to Giddens in: 13].

However, N. Tesla, "the wizard” [15], "holy scientist, ascetic, modern monk of the highest spiritual qualities” [1, p. 7], did not limit himself only to mechanisms controlled from a distance, but also considered the construction of machines, automatic mechanisms, which possess their own intelligence and individualized management, thus paving the way for artificial intelligence, as another characteristic of the 4th industrial revolution. "I think the time is not far off when I will show an automaton which, left to itself, will act as if it possessed reason and without any external willful control” [2, p. 439-440].

It should be borne in mind that artificial intelligence, however, still cannot be superior to a human being and his natural intelligence for the reason that it does not possess autonomous consciousness and that it is programmed for already existing solutions (according to Abramovic), while intelligence implies invention and creation (re-creation) of new solutions. "We could witness the complete separation of intelligence from consciousness, and the development of artificial intelligence could lead to a world ruled by superintelligent but completely unconscious beings” [7, p. 164].

4. Conclusions

Every (scientific and technological) revolution brings a series of social changes. It is quite certain that after every industrial revolution the world becomes more connected, i.e. networked. Consequences are occurring in the form of transformation of work processes, labor and social relations and global socio-economic restructuring.

Therefore, the impact of technology and Tesla’s civilization on human lives, people's identity and their access to innovations and better opportunities for a fairer society, to which these innovations lead, is unquestionable. Innovations, in the ethical sense, are neutral categories and creations of human work, and whether they will acquire a humanistic or dehumanistic sign depends on human use.

If they are used for human emancipation - they will have a humanistic effect. Technological innovations can be of greatest benefit to workers and the working class, due to the transfer of physical work from man to machine (robot), which relieves man of fatigue, poor working conditions, senseless and inhuman work and gains more free time for leisure, which enables thinking and designing new innovations and other significant activities to increase human freedom and meaning in life. New technologies improve our efficiency, simplify our lives, and can be fun.

However, if technologies produce the primary importance of machines and the secondary importance of man, then we can speak of a emancipatory, alienating effect, because man becomes an addition to the machine, whose biological rhythm of work is not in accordance (synchronized) with the work of artificial construction (automatic machines).

The three revolutions contributed to the development of society through the growth of the population, the standard of living and the increase in world wealth, but they also caused the unsustainable development of (global) society, which is why the Paris Agreement on Climate Change was signed in Paris in 2015 in order to influence the current climate changes (caused by the human factor) and the achievement of 17 sustainable development goals by 2030 or 2050. In order to restore the balance of the world ecosystem, the search for new sources of energy, which will enable the sustainable development and progress of humanity, is underway. We are on the trail of a new, 4th industrial revolution.

It remains to address the question of how states (through various regulations) can ensure a more even distribution of profits from technological innovations. Also, the question of how to encourage technological innovation with structural solutions is also important. One of the solutions would be to reduce or transfer the budgets for the army and warfare to the budget for scientific and technological innovations, first of all, the development of artificial intelligence, which can only lead to transhumanism and the risks/dangers caused by it in the distant future. In order for technology not to overcome humanity, it is important to bridge the brain gap, through learning the art of communication and cooperation with people of all ages, in order to build the ability to adapt to new scientific and technological revolutions and their progressive changes.

Social sciences, primarily Sociology, can make an immeasurable contribution to the study of N. Tesla’s legacy, within the framework of new teaching subjects, such as the Sociology of the genius of Nikola Tesla, so that the ingenuity of the new Prometheus becomes part of the habitus of new inventors and Sociology itself, i.e. its epistemological-theoretical tradition.

5. References

