Nano-structured Electrode Materials with Reduced Amount of Platinum Aimed for Hydrogen Evolution. Part I: Effect of cobalt

  • 1 Faculty of Technology and Metallurgy, University Ss Cyril and Methodius in Skopje, North Macedonia


The subject of this study is electrochemical and structural characterization of nano-dimenzioned composite electrode materials for hydrogen evolution consisted of Co, Pt or CoPt metallic phase and TiO2, both grafted on multiwalled carbon nanotubes (MWCNTs) as a support material. The main idea was to replace platinum entirely or to some extent as an electrode material. The electrode materials with different The common composition of the studied electrode materials was 10%Me + 18%TiO2 + MWCNTs, where Me = Pt, CoPt (1:1, wt.), CoPt (4:1, wt.) and Pt. The structural and surface changes, as well as their influence on electrocatalytic activity were analyzed by means of XRD, TEM, SEM and FTIR. It was found that Co considerably reduces Pt particle size, from 11 nm (in pure Pt metallic system) to 3–4 nm (in mixed CoPt systems). This is a reason for better activity of the electrode material with CoPt (1:1) metallic phase than that with pure Pt, while the CoPt (4:1) with very low quantity of Pt approaches the acitivity of the electrode material with pure Pt.



  1. P. Paunović, Enhancing the Activity of Electrode Materials in Hydrogen Economy, LAP Lambert Academic Publishing (2018)
  2. K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, J. Appl. Electrochem. 36, 507 (2006)
  3. J. O'M. Bockris and S. U. M. Khan, Surface Eelectrochemistry, Plenum Press, New York (1993)
  4. M.M. Jakšić, Int. J. Hydrogen Energy, 12, 727 (1987)
  5. M.M. Jakšić, Solid State Ionics, 136-137, 733 (2000)
  6. M.M. Jakšić, J. New Mater. Electrochem. Syst., 3, 167 (2000)
  7. L. Brewer, Science, 161, 115 (1968)
  8. S.J. Tauster, S.C. Fung, R.L. Garten, J. Am. Chem. Soc. 100, 170 (1978)
  9. J.M. Jaksić, N.V. Krstajić, Lj.M. Vračar, S.G. Neophytides, D. Labou, P. Falaras, M.M. Jakšić, Electrochim. Acta 53, 349 (2007)
  10. P. Paunović, in J.P. Reithmaier et al. (eds.), Nanostructured Materials for Advanced Technological Applications, Springer Science + Business Media B.V. (2009)
  11. M.M. Jakšić, C.M. Lanjevac, B. N. Grgur, N. V. Krstajić, J. New Mat. Eelectrochem. Syst., 3, 131 (2000)
  12. I. Paseka, Electrochim. Acta, 40, 2449 (1995)
  13. I. Paseka, J. Velicka, Electrochim. Acta, 42, 237 (1997)
  14. S. Rausch, H. Wendt, J. Electrochem. Soc., 143, 2852 (1996)
  15. L. Chen and A. Lasia, J. Electrochem. Soc., 138, 3321 (1991)
  16. S. Trasatti, G. Lodi, in S. Trasatti, Ed., Electrodes of Conduc-tive Metallic Oxides Part A, Elsevier Scientific Publishing Compa-ny (1980)
  17. P. Paunović, I. Radev, A. T. Dimitrov, O. Popovski, E. Lefterova, E. Slavcheva, S. Hadži Jordanov, Int. J. Hydrogen Energy, 34, 2886 (2009)
  18. BG patent Appl. No 38581
  19. B. D. Cullity, Elements of X-ray Diffraction. Addison-Wesley Publishing Company Inc. London (1978)
  20. P. Paunović, O. Popovski, P. Khadke, U. Krewer, G. Načevski, A. Grozdanov, A. T. Dimitrov, in P. Petkov et al. (eds.), Advanced Nanotechnologies for Detection and Defence against CBRN Agents, Science+Business Media B.V., part of Springer Nature (2018)
  21. M. M. Jakšić, Mater. Chem. and Phys., 22, 1 (1989)
  22. P. Paunović, O. Popovski, A. Dimitrov, D. Slavkov, E. Lefterova, S. Hadži Jordanov, Electrochim. Acta, 52, 4640 (2007)
  23. P. Paunović, O. Popovski, A. Dimitrov, D. Slavkov, E. Lefterova, S. Hadži Jordanov, Electrochim. Acta, 52, 1810 (2006)
  24. E. Antolini, J.R.C. Salgado, M.J. Giz, E.R. Gonzalez, Int. J. Hydrogen Energy, 30, 1213 (2005)
  25. F.H.B Lima, W.H. Lizcano-Valbuena, E. Teixeira-Neto, F.C. Nart, E.R. Gonzalez, E.A. Ticianelli EA, Electrochim. Acta, 52, 385 (2006)
  26. P. Paunović, A. T. Dimitrov, O. Popovski, D. Slavkov, S. Hadži Jordanov, Maced. J. Chem. Chem. Eng., 26, 87 (2007)

Article full text

Download PDF