TECHNOLOGICAL BASIS OF “INDUSTRY 4.0”
Overview of Generative AI Models in the Software Industry
- 1 Lviv Polytechnic National University, Ukraine
Abstract
Generative AI models have started to transform the software industry, driving innovation, and automating tasks previously deemed complex. This overview delves into the evolution, applications, and potential of these models, highlighting their capability to create novel content, enhance software development processes, and forecast industry trends. As these models continue to mature, the software industry stands on the cusp of a redefined future where human-machine collaboration will shape ground-breaking advancements.
Keywords
References
- B. Gates, “AI is about to completely change how you use computers,” gatesnotes.com. Accessed: Nov. 19, 2023. [Online]. Available: https://www.gatesnotes.com/AI-agents
- “ChatGPT.” Accessed: Nov. 19, 2023. [Online]. Available: https://chat.openai.com
- “GitHub Copilot • Your AI pair programmer,” GitHub. Accessed: Nov. 19, 2023. [Online]. Available: https://github.com/features/copilot
- Yihan Cao et al., “A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT,” arXiv.org, 2023, doi: 10.48550/arxiv.2303.04226.
- A. Nguyen-Duc et al., “Generative Artificial Intelligence for Software Engineering -- A Research Agenda.” arXiv, Oct. 28, 2023. Accessed: Nov. 16, 2023. [Online]. Available: http://arxiv.org/abs/2310.18648
- A. Vaswani et al., “Attention Is All You Need.” arXiv, Aug. 01, 2023. Accessed: Nov. 17, 2023. [Online]. Available: http://arxiv.org/abs/1706.03762
- C. Ebert and P. Louridas, “Generative AI for Software Practitioners,” IEEE Softw., vol. 40, no. 4, Jul. 2023, doi: 10.1109/MS.2023.3265877.
- “Unleash developer productivity with generative AI | McKinsey.” Accessed: Nov. 20, 2023. [Online]. Available: https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai
- A. M. Dakhel et al., “GitHub Copilot AI pair programmer: Asset or Liability?” arXiv, Apr. 14, 2023. Accessed: Nov. 16, 2023. [Online]. Available: http://arxiv.org/abs/2206.15331
- C. Zhang et al., “One Small Step for Generative AI, One Giant Leap for AGI: A Complete Survey on ChatGPT in AIGC Era.” arXiv, Apr. 04, 2023. Accessed: Nov. 18, 2023. [Online]. Available: http://arxiv.org/abs/2304.06488
- T. Phung et al., “Generative AI for Programming Education: Benchmarking ChatGPT, GPT-4, and Human Tutors.” arXiv, Jul. 31, 2023. Accessed: Nov. 16, 2023. [Online]. Available: http://arxiv.org/abs/2306.17156
- W. Ma et al., “ChatGPT: Understanding Code Syntax and Semantics.” arXiv, Oct. 19, 2023. Accessed: Nov. 16, 2023. [Online]. Available: http://arxiv.org/abs/2305.12138
- X. Zhou et al., “On the Concerns of Developers When Using GitHub Copilot.” arXiv, Nov. 02, 2023. Accessed: Nov. 16, 2023. [Online]. Available: http://arxiv.org/abs/2311.01020
- A. Tamkin, M. Brundage, J. Clark, and D. Ganguli, “Understanding the Capabilities, Limitations, and Societal Impact of Large Language Models.” arXiv, Feb. 04, 2021. Accessed: Nov. 17, 2023. [Online]. Available: http://arxiv.org/abs/2102.02503