DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”

Nano-structured Electrode Materials with Reduced Amount of Platinum Aimed for Hydrogen Evolution. Part II: Effect of MWCNTs modification

Abstract

Direct Metal Laser Sintering (DMLS) is a revolutionary technology that allows a production of fully functional metal parts directly from a 3D CAD data, eliminating the investment to production tools and technologies which brings considerable cost and time savings. Metal parts made by DMLS technology are fully comparable with casted or machined parts. A range of application of DMLS technologies is very wide – from prototypes, through short-run production to final products. Advantages of DMLS technology are arising along with complexity of parts – more complex geometry of parts (in terms of shape and occurrence of the detail) make DMLS technology even more economically effective.

Keywords

References

  1. P. Paunović, Enhancing the Activity of Electrode Materials in Hydrogen Economy, LAP Lambert Academic Publishing (2018)
  2. J. O’M. Bockris, T. N. Veziroglu, D. Smith, Solar hydrogen energy – the power to save the Earth, Macdonald Optima, London (1991)
  3. P. Paunović, A. Tomova, this issue.
  4. F. Maillard, P.A. Simonov, E.R Savinova, in: P. Serp and J. L. Figueiredo (Eds.), Carbon Materials as Supports for Fuel Cell Electrocatalysts, John Wiley & Sons (2009)
  5. T. Chen, L. Dai, Mater. Today, 16, 271 (2013)
  6. P. Serp, M. Corrias, P. Kalck, Appl. Catal. A: Gen., 253, 337 (2003)
  7. U. Sahaym, M. G. Norton, J. Mater. Sci., 43, 5398 (2008)
  8. K. Lee, J. Zhang, H. Wang, P. Wilinson, J. Appl. Electrochem., 36, 507 (2007)
  9. Y. Shao, G. Yin, J. Zhang, Y. Gao, Electrochim. Acta, 51, 5853 (2006)
  10. Y. S. Park, Y. C. Choi, K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, Y. H. Lee, Carbon, 3, 655 (2001)
  11. D. T. Colbert, J. Zhang, S. M. McClure, P. Nikolaev, Z. Chen, J. H Hafner, D. W. Owens, P. G. Kotula, C. B. Carter, J. H. Weaver, A. G. Rinzler, R. E. Smalley, Science, 266, 1218 (1994)
  12. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C. B. Huffman, F. J. Rodrigez-Macias, P. J. Boul, A. H. Lu, D. Heymann, D. T. Colbert, R. S. Lee, J. E. Fischer, A. M. Rao, P. C. Eklund, R. E. Smalley, Appl. Phys. A, 67, 29 (1998)
  13. B. Marsan, N. Fradette, G. Beaudoin, J. Electrochem. Soc., 139, 1889 (1992)
  14. L. M. Da Silva, L. A. De Faria, J. F. C. Boodts, Electrochim. Acta, 47, 395 (2001)
  15. H. Hiura, T.W. Ebbesen, J. Fujita, K. Tanigaki, T. Takada, Nature, 367, 148 (1994)
  16. F. Tunistra, J. L. Koenig, Raman Spectrum of Graphite, J. Chem. Phys., 53, 1126 (1970)
  17. Y. S. Park, Y. C. Choi, K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. Ch. Lim, X. Y. Zhu, Y. H. Lee, Carbon, 39, 655 (2001)
  18. P. Paunović, A. T. Dimitrov, O. Popovski, D. Slavkov, S. Hadži Jordanov, Maced. J. Chem. Chem. Eng., 26, 87 (2007)
  19. P. Paunović, O. Popovski, A. Dimitrov, D. Slavkov, E. Lefterova and S. Hadži Jordanov, Electrochim. Acta, 52, 4640 (2007)

Article full text

Download PDF