TECHNOLOGICAL BASIS OF “INDUSTRY 4.0”

EBL in the Industry 4.0 Era

  • 1 Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovak Republic
  • 2 Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • 3 Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria; University of Chemical Technology and Metallurgy, Sofia, Bulgaria

Abstract

In this work, electron beam lithography (EBL) is presented as an important technology shaping the future of semiconductor manufacturing within the Industry 4.0 initiative. The EBL contribution to the ongoing evolution of electronic devices and technologies is discussed in the context of the Industry 4.0 initiative. Semiconductor technologies are foundational to the implementation of Industry 4.0, playing a critical role in enabling advanced computing, communication, sensing, and control systems. They facilitate the creation of intelligent, interconnected, and automated systems in the Industry 4.0 initiative. In addition, we present some of our results in the field of EBL research. The focus is on investigating the electron beam resist profile depending on various process parameters. The influence of electron beam lithography parameters, such as electron energy, resist thickness, and exposure dose, on the resist sidewall shape (profile) is studied for the PMMA (polymethyl-methacrylate) positive electron beam resist. Simulation results based on measurements along the resist profile depth are presented and discussed. The aim of this work is to develop and validate models for predicting and precisely controlling resist profiles in thick PMMA layers applied in the fabrication of electronic devices.

Keywords

References

  1. A.N. Broers, A.C.F. Hoole, J.M. Ryan. Microelectronic Engineering, 32 (1996) 131
  2. M. J. Hatzakis, Electrochem. Soc., 116 (1969) 1033-37
  3. David B. Cordes, P. D. Lickiss, F. Rataboul. Chem. Rev., 110 (3) (2010) 2081–2173
  4. A. E. Grigorescu, M. C. van der Krogt, and C. W. Hagen. J. Micro/Nano- lithogr. MEMS, MOEMS, 6 (2007) 043006
  5. A.E. Grigorescu, C.W. Hagen. Nanotechnology, 20 (2009) 292001
  6. K.Yamazaki, H. Namatsu. Japan. J. Appl. Phys., 43 (2004) 3767
  7. B. E.Maile, W. Henschel, H.Kurz, B. Rienks, R. Polman and P. Kaars. Japan. J. Appl. Phys., 39 (2000) 6836
  8. J. K. W.Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol’tsman, B. Voronov, R. Sobolewski, W. E. Keicher, and K. K. Berggren. IEEE Trans. Appl. Supercond., 15 (2005) 626
  9. K. M. Rosfjord, J. K. W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol’tsman, K. K. Berggren. Opt. Express, 14 (2006) 527
  10. M. Lipson, Nanotechnology, 15 (10) (2004) 622–627
  11. K. Kaschlik, E.-B. Kley. Maskentechnik für Mikroelektronik- Bausteine Tagung München, 29. Oktober 1992: Tagungsbericht. Düsseldorf: VDI Verlag, (1992)
  12. Ch. Klein, E. Platzgummer. Proc. of SPIE Photomask Technology, 9985, edited by B. S. Kasprowicz, P. D. Buck (2016) 998505
  13. I. Hotovy, I. Kostic, P. Nemec, M. Predanocy, and V. Rehacek. J. of Micromechanics and Microengineering, 25 (2015) 074006
  14. P. Durina, A. Bencurova, A. Konecnikova, I. Kostic, K. Vutova, E. Koleva, G. Mladenov, P. Kus, and A. Plecenik. J. of Phys.: Confer. Series, 514 (2013) 187-191
  15. I. Kostic, K. Vutova, E. Koleva, R. Andok, A. Bencurova, A. Konecnikova, and G. Mladenov, Polymer Science Research advances, practical applications and educational aspects, edited, by A. Méndez-Vilas and A. Solano-Martín (Formatex Research Center, Badajoz, Spain, (2016) 488-497
  16. www.raith.com
  17. I. Kostic, K. Vutova, E. Koleva, R. Andok, A. Bencurova. J. of Physics: Conf. Series, 1492 (2020) 012015
  18. K. Vutova and G. Mladenov, Lithography, edited by M. Wang, Intech, Vukovar, Croatia (2010) 319-350
  19. R. Andok, K. Vutova, E. Koleva, A. Bencurova, I. Kostic. AIP Conference Proceedings, 2411 (2021) 040001 https://doi.org/10.1063/5.0067068

Article full text

Download PDF