DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”

2D semiconductive nanomaterials for sensor application

  • 1 Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovak Republic
  • 2 Institute of Electronics, Bulgarian Academy of Sciences, Bulgaria

Abstract

This paper presents an investigation of innovative nanostructured semiconductive materials, focusing on dichalcogenides of transition metals, particularly WS2. The properties of WS2 in the context of its application in sensor technology and highlight the anticipated advantages of nanostructured disulfides compared to bulk semiconductor materials are discussed in the introduction. We propose a model sensor element based on the nanostructured disulfide WS2 and introduce a technological method utilizing electron beam lithography (EBL) for its preparation. The paper details the processes involved in preparing the resist masking layer using EBL, the metallization of the interdigital electrode (IDE) with contacts and important EBL characteristics such as a contrast curve, dependence of the linewidth on the exposure dose, and the line edge roughness.

Keywords

References

  1. Osada M., T. Sasaki. Adv. Mater. 24 (2) 210–228 (2012).
  2. Novoselov K.S., A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al., Science 306 666 (2004).
  3. Late, D.J., B. Liu, H.S.S.R. Matte, C.N.R. Rao, V.P. Dravid, Adv. Funct. Mater. 22 1894 (2012).
  4. Nakano H., T. Mitsuoka, M. Harada, K. Horibuchi, H. Nozaki, N. Takahashi, et al., Angew. Chem. Int. Ed. 45 6303-06 (2006).
  5. Li L., S. Lu, J. Pan, Z. Qin, Y.Q. Wang, Y. Wang, et al., Adv. Mater. 26 4820-24 (2014).
  6. Pacile D., J.C. Meyer, C¸. O. Girit, A. Zettl, Appl. Phys. Lett. 92 133107 (2008).
  7. Li G., Y. Li, X. Qian, H. Liu, H. Lin, N. Chen, et al., J. Phys. Chem. C 115 2611-15 (2011).
  8. Late D.J., ACS Appl. Mater. Interfaces 7 5857-5862 (2015).
  9. Wang X., S. Kajiyama, H. Iinuma, E. Hosono, S. Oro, I. Moriguchi, et al., Nat. Commun. 6 6544 (2015).
  10. Late D.J., Y. Huang, B. Liu, J. Luo, J. Acharya, S.N. Shirodkar, et al., ACS Nano 7 4879 (2013).
  11. Rout C.S., R. Khare, R.V. Kashid, D.S. Joag, M.A. More, N.A. Lanzillo, et al., Eur. J. Inorg. Chem. 2014 5331-36 (2014).
  12. Lee C., E.C. Silva, L. Calderin, M.A.T. Nguyen, M.J. Hollander, B. Bersch, et al., Sci. Rep. 5 10013 (2015).
  13. Saito Y., T. Nojima, Y. Iwasa, Nat. Rev. Mater. 2 16094 (2016).
  14. Kolobov A.V., Alexander V., Junji Tominaga. Two-dimensional transition-metal dichalcogenides. Springer 239 (2016).
  15. D.J. Late, B. Liu, H.S.S.R. Matte, V.P. Dravid, C.N.R. Rao, ACS Nano 6 5635 (2012).
  16. Ratha S., A.J. Simbeck, D.J. Late, S.K. Nayak, C.S. Rout, Appl. Phys. Lett. 105 243502 (2014).
  17. Late D.J., B. Liu, J. Luo, A. Yan, H.S.S.R. Matte, M. Grayson, et al., Adv. Mater. 24 3549 (2012).
  18. Hwang, W. S. et al. Appl. Phys. Lett. 101 013107 (2012).
  19. Qiao S., Liu J., Kawi S. Chem Cat Chem 11 5835–7 (2019).
  20. Peng B., Ang P. K., Loh K. P. Nano Today 10 128–37 (2015).
  21. Tanabe I. et al. Appl. Phys. Lett. 108 252103 (2016).
  22. Paola A. D., Palmisano L., Derrigo M. and Augugliaro V. J. Phys. Chem. B 101 876-83 (1997).
  23. Adilbekova B., Lin Y., Yengel E., Faber H., Harrison G. T., et al. J. Mater. Chem. C 8 5259-64 (2020).
  24. Orofeo C. M., Suzuki S., Sekine Y., and Hibino H. Appl. Phys. Lett. 105 083112 (2014).

Article full text

Download PDF