TECHNOLOGICAL BASIS OF “INDUSTRY 4.0”

Application of Neural Networks in Underwater Drone Control

  • 1 AGH University of Kraków

Abstract

The integration of neural networks has revolutionised various technological domains, including the control mechanisms of underwater drones, especially in the context of Industry 4.0. This review explores the application of neural network architectures to improve the navigation, stability and overall performance of underwater drones. A systematic analysis of current methods is provided, focusing on their effectiveness in addressing challenges such as dynamic underwater environments, sensor noise, and real-time decision making. Key advances in neural network-based control strategies are discussed. Furthermore, the integration of these networks with traditional control systems to achieve robust and adaptive control frameworks is highlighted. Through the examination of case studies and experimental results, this review identifies potential areas for future research and development to further the advancement of autonomous underwater vehicles through intelligent control systems.

Keywords

References

  1. A. Sahoo, S. K. Dwivedy, and P. S. Robi, ―Advancements in the field of autonomous underwater vehicle,‖ Ocean Engineering, vol. 181. 2019. doi: 10.1016/j.oceaneng.2019.04.011.
  2. S. N. Shome et al., ―Development of Modular Shallow Water AUV: Issues & Trial Results,‖ Journal of The Institution of Engineers (India): Series C, vol. 93, no. 3, 2012, doi: 10.1007/s40032-012-0026-0.
  3. D. Munteanu, D. Moina, C. G. Zamfir, Ștefan M. Petrea, D. S. Cristea, and N. Munteanu, ―Sea Mine Detection Framework Using YOLO, SSD and EfficientDet Deep Learning Models,‖ Sensors, vol. 22, no. 23, 2022, doi: 10.3390/s22239536.
  4. G. Mattei et al., ―Multi-Method Technics and Deep Neural Networks Tools on Board ARGO USV for the Geoarchaeological and Geomorphological Mapping of Coastal Areas: The Case of Puteoli Roman Harbour,‖ Sensors, vol. 24, no. 4, 2024, doi: 10.3390/s24041090.
  5. G. Bucci, ―Hydrographic Drone Non-Invasive Underwater Investigations: New Archaeological Discoveries in Valle Fossa di Porto (Comacchio—FE, Italy),‖ Heritage, vol. 6, no. 2, 2023, doi: 10.3390/heritage6020096.
  6. A. Birk et al., ―Dexterous Underwater Manipulation from Onshore Locations: Streamlining Efficiencies for Remotely Operated Underwater Vehicles,‖ IEEE Robot Autom Mag, vol. 25, no. 4, 2018, doi: 10.1109/MRA.2018.2869523.
  7. N. Palomeras et al., ―I-AUV docking and intervention in a subsea panel,‖ in IEEE International Conference on Intelligent Robots and Systems, 2014. doi: 10.1109/IROS.2014.6942870.
  8. D. Youakim, P. Ridao, N. Palomeras, F. Spadafora, D. Ribas, and M. Muzzupappa, ―MoveIt!: Autonomous Underwater Free-Floating Manipulation,‖ IEEE Robot Autom Mag, vol. 24, no. 3, 2017, doi: 10.1109/MRA.2016.2636369.
  9. J. Guo, J. Wang, and Y. Bo, ―An Observer-Based Adaptive Neural Network Finite-Time Tracking Control for Autonomous Underwater Vehicles via Command Filters,‖ Drones, vol. 7, no. 10, 2023, doi: 10.3390/drones7100604.
  10. P. Bałazy, P. Gut, and P. Knap, ―Positioning algorithm for AGV autonomous driving platform based on artificial neural networks,‖ Robotic Systems and Applications, vol. 1, no. 2, 2021, doi: 10.21595/rsa.2021.22109.
  11. F. Gul, W. Rahiman, and S. S. Nazli Alhady, ―A comprehensive study for robot navigation techniques,‖ Cogent Engineering, vol. 6, no. 1. 2019. doi: 10.1080/23311916.2019.1632046.
  12. L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, ―Reinforcement learning for control: Performance, stability, and deep approximators,‖ Annual Reviews in Control, vol. 46. 2018. doi: 10.1016/j.arcontrol.2018.09.005.
  13. O. Elhaki, K. Shojaei, and P. Mehrmohammadi, ―Reinforcement learning-based saturated adaptive robust neural-network control of underactuated autonomous underwater vehicles,‖ Expert Syst Appl, vol. 197, 2022, doi: 10.1016/j.eswa.2022.116714.
  14. R. Hernandez-Alvarado, L. G. Garcia-Valdovinos, T. Salgado-Jimenez, A. Gomez-Espinosa, and F. F. Navarro, ―Self-tuned PID control based on backpropagation Neural Networks for underwater vehicles,‖ in OCEANS 2016 MTS/IEEE Monterey, OCE 2016, 2016. doi: 10.1109/OCEANS.2016.7761412.
  15. E. Dong, S. Guo, X. Lin, X. Li, and Y. Wang, ―A neural network-based self-tuning PID controller of an autonomous underwater vehicle,‖ in 2012 IEEE International Conference on Mechatronics and Automation, ICMA 2012, 2012. doi: 10.1109/ICMA.2012.6283262.
  16. R. Hernández-Alvarado, L. G. García-Valdovinos, T. Salgado-Jiménez, A. Gómez-Espinosa, and F. Fonseca- Navarro, ―Neural network-based self-tuning PID control for underwater vehicles,‖ Sensors (Switzerland), vol. 16, no. 9, 2016, doi: 10.3390/s16091429.
  17. M. J. Zhang and Z. Z. Chu, ―Adaptive sliding mode control based on local recurrent neural networks for underwater robot,‖ Ocean Engineering, vol. 45, 2012, doi: 10.1016/j.oceaneng.2012.02.004.
  18. F. García-Córdova and A. Guerrero-González, ―Intelligent navigation for a solar powered unmanned underwater vehicle,‖ Int J Adv Robot Syst, vol. 10, 2013, doi: 10.5772/56029.
  19. A. Guerrero-González, F. García-Córdova, and J. Gilabert, ―A biologically inspired neural network for navigation with obstacle avoidance in autonomous underwater and surface vehicles,‖ in OCEANS 2011 IEEE - Spain, 2011. doi: 10.1109/Oceans-Spain.2011.6003432.
  20. H. Xing et al., ―A Multi-Sensor Fusion Self-Localization System of a Miniature Underwater Robot in Structured and GPS-Denied Environments,‖ IEEE Sens J, vol. 21, no. 23, 2021, doi: 10.1109/JSEN.2021.3120663.
  21. Y. Wu, Y. Wei, and D. An, ―Research on Multi-sensor Information Fusion Method of Underwater Robot Based on Elman Neural Network,‖ in 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2022, 2022. doi: 10.1109/CSCWD54268.2022.9776294.
  22. U. Ali, W. Muhammad, M. J. Irshad, and S. Manzoor, ―Multi-sensor fusion for underwater robot self-localization using PC/BC-DIM neural network,‖ Sensor Review, vol. 41, no. 5, 2021, doi: 10.1108/SR-03-2021-0104.
  23. P. W. J. van de Ven, T. A. Johansen, A. J. Sørensen, C. Flanagan, and D. Toal, ―Neural network augmented identification of underwater vehicle models,‖ Control Eng Pract, vol. 15, no. 6, 2007, doi: 10.1016/j.conengprac.2005.11.004.
  24. P. J. G. Lisboa, V. S. Kodogiannis, and J. Lucas, ―Neural network identification and control of an underwater vehicle,‖ Transactions of the Institute of Measurement & Control, vol. 19, no. 4, 1997, doi: 10.1177/014233129701900405.
  25. C. Lin, H. Wang, J. Yuan, D. Yu, and C. Li, ―An improved recurrent neural network for unmanned underwater vehicle online obstacle avoidance,‖ Ocean Engineering, vol. 189, 2019, doi: 10.1016/j.oceaneng.2019.106327.
  26. C. Lin, H. Wang, M. Fu, J. Yuan, and D. Yu, ―A convolution neural network based obstacle avoiding method for unmanned underwater vehicle,‖ ICIC Express Letters, vol. 13, no. 11, pp. 1079–1086, 2019, doi: 10.24507/icicel.13.11.1079.

Article full text

Download PDF