DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”

Preparation, phase and optical characterization of Sm2O3-ZrO2 coatings on glasses obtained by sol-gel technology using the Dip Coating method

  • 1 Bulgarian Academy of Sciences, Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre “Acad. Angel Balevski”, Bulgaria
  • 2 Institute of Electrochemistry and Energy Systems “Academician Evgeni Budevski at the Bulgarian Academy of Sciences”, Bulgaria
  • 3 Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, Bulgaria

Abstract

Obtained experimental self-cleaning coatings (based on compositions with the participation of Sm2O3), applied by the sol-gel method on glass slides. This study attempts to improve the overall efficiency of a photovoltaic solar panel by using a Sm2O3 doped ZrO2 (SDZ)-based coating. The optical characterization and phase composition of the obtained experimental samples were investigated using UVVIS- NIR, XRD and XRF methods. The coatings are nanocrystalline according to XRD and XRF analyzes and show transmittance close to that of pure glass when tested with a UV–VIS–NIR spectrophotometer The experimental results represent a prerequisite for the development of a series of additional compositions and a detailed technological regime for obtaining various modifications of resistant, long-lasting selfcleaning coatings, potentially applicable to photovoltaic panels.

Keywords

References

  1. Y. Shen, S. Shao, H. Yu, Z. Fan, H. He, J. Shao, Influences of oxygen partial pressure on structure and related properties of ZrO2 thin films prepared by electron beam evaporation deposition. Appl. Surf. Sci. 254, 2007, 552.
  2. R. Yusoh, M. Horprathum, P. Eiamchai, P. Chindaudom, K. Aiempanakit, Determination of Optical and Physical Properties of ZrO2 Films by Spectroscopic Ellipsometry, Procedia Engineering, 32, 2012, pp. 745-751.
  3. A. Bashir, M. Farooq, A. Malik, S. Naseem, A. S. Bhatti, UV-A Treatment of ZrO2 Thin Films Fabricated by Environmental Friendlier Water-Based Solution Processing: Structural and Optical Studies, Coatings, 11, 821, 2021, pp. 1-14.
  4. D.H.A. Besisa, E.M.M. Ewais, Black zirconia composites with enhanced thermal, optical and mechanical performance for solar energy applications, Sol. Energy Mater. Sol. Cell. 225, 2021, 111063, https://doi.org/10.1016/j. solmat.2021.111063.
  5. K. Lovchinov, R. Gergova, G. Alexieva, Structural, Morphological and Optical Properties of Nanostructured ZrO2 Films Obtained by an Electrochemical Process at Different Deposition Temperatures, Coatings, 12, 972, 2022, https://doi.org/10.3390/coatings12070972, pp. 1-10.
  6. A. Sytchkova, M.L. Protopapa, P. Olivero, L. Tapfer, E. Burresi, T. Dunatov, Z. Siketic, M. Palmisano, E. Pesce, Y. Wang, Z. Wang, H. He, Optical characterization of the impact of 100 keV protons on the optical properties of ZrO2 films prepared by ALD on fused silica substrates, Appl. Opt. 62 (7) (2023), OIC1-OIC5.
  7. S.K. Awasthi, K. Sharma, A. Gupta, Zirconia based hydrophobic coatings exhibiting excellent durability for versatile use, J. Electrochem. Sci. Eng., 14, 4, 2024, pp. 441-457.
  8. Brunet, M., Mafhoz Kotb, H., Bouscayrol, L., Scheid, E., Andrieux, M., Legros, C., Schamm-Chardon. S.: Nanocrystallized tetragonal metastable ZrO2 thin films deposited by metal-organic chemical vapor deposition for 3D capacitors. Thin Solid Films. 519, 2011, 5638.
  9. Andrieux, M., Ribot, P., Gasqueres, C., Servet, B., Garry, G.: Effect of the oxygen partial pressure on the toughness of tetragonal zirconia thin films for optical applications. Appl. Surf. Sci. 263, 2012, 284.
  10. Yusoh, R., Horprathum, M., Eiamchai, P., Chindaudom, P., Aiempanakit, K.: Determination of optical and physical properties of ZrO2 films by spectroscopic ellipsometry. Procedia Eng. 32, 2012, 745.
  11. Yildiz, K., Akgul, U., Coskun, B., Atici, Y.: Rf-sputtering deposition of nano-crystalline zirconia thin films with high transparency. Mater. Lett. 94, 2013, 161.
  12. Panda, D., Tseng, T.-Y.: Growth, dielectric properties, and memory device applications of ZrO2 thin films. Thin Solid Films 531, 1, 2013.
  13. Khojier, K., Savaloni, H., Jafari, F.: Structural, electrical, and decorative properties of sputtered zirconium thin films during post-annealing process. J. Theor. Appl. Phys. 7, 2013, 55.
  14. S.N. Basahel, T.T. Ali, M. Mokhtar, K. Narasimharao, Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange. Nanoscal. Res. Lett. 10, 2015, 73.
  15. Alireza Hojabri, Structural and optical characterization of ZrO2 thin films grown on silicon and quartz substrates, J Theor Appl Phys, 16, DOI 10.1007/s40094-016-0218-8, 2016, pp. 1-6.
  16. Lopes, N.I.A.; Freire, N.H.J.; Resende, P.D.; Santos, L.A.; Buono, V.T.L. Electrochemical deposition and characterization of ZrO2 ceramic nanocoatings on superelastic NiTi alloy. Appl. Surf. Sci. 450, 2018, pp. 21-30.
  17. T. Fanbin, D. Guangqing, L. Chunxiang, Q. Zhenpeng, Z. Tianxia, Study on the ZrO2 Thin Films with Spectroscopic Ellipsometry, 2019 6th International Conference on Machinery, Mechanics, Materials, and Computer Engineering (MMMCE 2019), DOI: 10.25236/mmmce.2019.053, 2019, pp. 261-266.
  18. D. Islamov, V. Gritsenko, T. Perevalov, V. Aliev, V. Nadolinny, A. Chin, Oxygen Vacancies in Zirconium Oxide as the Blue Luminescence Centres and Traps Responsible for Charge Transport: Part II - Films, 2020, https://doi.org/10.2139/ ssrn.3708728.
  19. 3. O. Dimitrov, I. Stambolova, S. Vassilev, K. Lazarova, T. Babeva, Morphological features and optical properties of nanosized ZrO2 films prepared by sol-gel spin coating, Journal of Physics: Conference Series, 1492, 012024, 2020, pp. 1-5.
  20. O. Dimitrov, I. Stambolova, S. Vassilev, K. Lazarova, S. Simeonova, Surface and Optical Properties of Gd-Doped ZrO2 Nano Films, Mater. Proc., 4, 4, 2021, https://doi.org/10.3390/IOCN2020- 07841, pp. 1-7.
  21. Bashir, A.; Farooq, M.; Malik, A.; Naseem, S.; Bhatti, A.S. UV-A Treatment of ZrO2 Thin Films Fabricated by Environmental FriendlierWater-Based Solution Processing: Structural and Optical Studies. Coatings, 11, 2021, 821.
  22. Lovchinov, K.; Slavov, L.; Alexieva, G.; Ivanov, P.; Marinov, G.; Gergova, R.; Strijkova, V.; Babeva, T. Study of ZrO2 nanolayers deposited electrochemically on different conductive substrates. Mater. Sci. Semicond. Process. 2021, 131, 105843
  23. P. Kalita, S. Ghosh, G. Gutierrez, et al., Grain size effect on the radiation damage tolerance of cubic zirconia against simultaneous low and high energy heavy ions: nano triumphs bulk, Sci. Rep., 11, 2021, 10886, https://doi.org/10.1038/s41598- 021-90214-6..
  24. T. Wang, G. Wang, M. Qiu, W. Cheng, J. Zhang, G. Zhao, The origin of the 500 nm luminescence band related to oxygen vacancies in ZrO2, J. Lumin., 237, 2021, https://doi.org/10.1016/j.jlumin.2021.118133.
  25. V. Ciupină, M. Albu, A. Caraiane, C. Porosnicu, C. Staicu, V. Nicolescu, R. Manu, Nitrogen doped ZrO2 thin films: synthesis and characterization, Journal of Ovonic Research, Vol. 18, No. 6, 2022, pp. 759-767.
  26. A. Sytchkova, M.L. Protopapa, P. Olivero, E. Burresi, L. Tapfer, M. Palmisano, E. Pesce, T. Dunatov, Y. Wang, H. He, Optical characterization of the impact of 100 keV protons on the optical properties of ZrO2 films prepared by ALD on fused silica substrates, in: R. Sargent, A. Sytchkova (Eds.), Optical Interference Coatings Conference (OIC) 2022, Technical Digest Series, Optica Publishing Group, 2022, https://doi.org/10.1364/OIC.2022.WA.2 paper WA.2
  27. Y. Guan, J. Zhou, H. Zhong, W. Wang, Z. Zhang, F. Luo, S. Ning, Thickness dependence of the crystallization and phase transition in ZrO2 thin films, Journal of Advanced Ceramics, 12, 4, 2023, pp. 822–829.
  28. 8. A. Sytchkova, M. L. Protopapa, H. Kolev, E. Burresi, P. Olivero, T. Dunatov, Z. Siketi, L. Tapfer, Z. Wang, H. He, Y. Wang, Impact of proton irradiation on photoluminescent properties of C-doped ZrO2 films prepared by ALD, Vacuum, 224, 2024, 113083, pp. 1-9.
  29. S.K. Muhammad, M.O. Dawood, N.Y. Ahmed, E.S. Hassan, N.F. Habubi, S.S. Chiad, Optical and Structural characterization of spraying ZrO2 and doped B: ZrO2 thin films, Journal of Physics: Conference Series, 1660, 2020, 012057, pp. 1-7.
  30. Hyun Ju Cho, Chang Kwon Hwangbo, Optical inhomogeneity and microstructure of ZrO2 thin films prepared by ion-assisted deposition, Applied optics, Vol. 35, No. 28, 1996, pp. 5545- 5552.
  31. S. Jothi, N. Prithivikumaran,N. Jeyakumaran, Optical parameter determination of ZrO2 thin films prepared by sol gel dip coating, /Int.J. ChemTech Res.,6, 13, 2014, pp 5342-4346.
  32. Joy, K., Berlin, I.J., Nair, P.B., Lakshmi, J.S., Daniel, G.P., Thomas, P.V.: Effects of annealing temperature on the structural and photoluminescence properties of nanocrystalline ZrO2 thin films prepared by sol-gel route. J. Phys. Chem. Solids 72, 673 (2011)
  33. Lim, H.S.; Ahmad, A.; Hamzah, H. Synthesis of zirconium oxide nanoparticle by sol-gel technique. AIP, 1571, 2013, 812.
  34. 10. G.A. Kadhim, O.A. Manaty, Preparation and study of the structural and optical traits of AG: ZrO2 nanostructure thin films prepared via spin coating: effect of spin speed on thin films properties, ARPN Journal of Engineering and Applied Sciences, Vol. 18, No. 12, 2023, pp. 1386-1391.
  35. S. Lange, I. Sildos, M. Hartmanova, J. Aarik, V. Kiisk, Luminescence properties of Sm3+-doped polycrystalline ZrO2, Journal of Non-Crystalline Solids, 354, 2008, pp. 4380–4382.
  36. Ru. S. Lange, I. Sildos, M. Hartmanova, V. Kiisk,E. E. Lomonova, M. Kirm, Optical Investigation of Sm doped ZrO2, Journal of Physics: Conference Series, 249, 2010, 012007, pp. 1-6.
  37. Y. S. Yordanov, M. Aleksandrova, V. Petkov, S. Usun, M. Pavlova, Luminescent properties of sol-gel synthesized ZrO2 and Sm2O3 coatings on glass, International Scientific Journal "Machines. Technologies. Materials", Year XIX, Issue 4 , 2025, pp. 146-149.
  38. 50. D. Yang, L. Xue, Synthesis of samarium oxide films by pulsed laser deposition, MRS Online Proceedings; no. 13, 780, 2003, pp. 1-6.

Article full text

Download PDF