DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”
Thermodynamic evaluation of a 250 MW three-cylinder steam turbine from ccpp
- 1 Faculty of Engineering, University of Rijeka, Croatia
- 2 Department of maritime sciences, University of Zadar, Croatia
Abstract
In this paper are presented isentropic analysis results of a steam turbine, their cylinders and cylinder parts which nominal power is equal to 250 MW. The analyzed steam turbine is a complex three-cylinder turbine which operates in a CCPP (Combined Cycle Power Plant). Considering all cylinders, the dominant mechanical power producer in the observed turbine is LPC (Low Pressure Cylinder) which produces 111.80 MW of mechanical power in real (polytropic) steam expansion process (almost half of the real mechanical power produced in the whole turbine). Developed mechanical power in turbine cylinders and isentropic losses are directly proportional – higher produced mechanical power will result in higher isentropic losses and vice versa. Whole analyzed steam turbine, their cylinders and cylinder parts how very good isentropic performance and high isentropic efficiencies of around 90%. The isentropic performance of the whole analyzed steam turbine, their cylinders and cylinder parts is in the range of the steam turbines (and their cylinders) from supercritical and ultrasupercritical power plants which are proven to be the best steam turbines from isentropic point of view.
Keywords
References
- Leyzerovich, A. S. (2021). Steam turbines for modern fossil-fuel power plants. River Publishers.
- Tanuma, T. (Ed.). (2017). Advances in steam turbines for modern power plants. Woodhead Publishing.
- Khanmohammadi, S., Azimian, A. R., & Khanmohammadi, S. (2013). Exergy and exergo–economic evaluation of Isfahan steam power plant. International Journal of Exergy, 12(2), 249-272. (doi:10.1504/IJEX.2013.053386)
- Ebrahimgol, H., Aghaie, M., Zolfaghari, A., & Naserbegi, A. (2020). A novel approach in exergy optimization of a WWER1000 nuclear power plant using whale optimization algorithm. Annals of Nuclear Energy, 145, 107540. (doi:10.1016/j.anucene.2020.107540)
- Abbaspour, H., Ehyaei, M. A., Ahmadi, A., Panahi, M., Abdalisousan, A., & Mirzohosseini, A. (2021). Energy, exergy, economic, exergoenvironmental and environmental (5E) analyses of the cogeneration plant to produce electrical power and urea. Energy Conversion and Management, 235, 113951. (doi:10.1016/j.enconman.2021.113951)
- Mrzljak, V., Poljak, I., & Medica-Viola, V. (2017). Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Applied Thermal Engineering, 119, 331- 346. (doi:10.1016/j.applthermaleng.2017.03.078)
- Baressi Šegota, S., Mrzljak, V., Anđelić, N., Poljak, I., & Car, Z. (2023). Use of Synthetic Data in Maritime Applications for the Problem of Steam Turbine Exergy Analysis. Journal of Marine Science and Engineering, 11(8), 1595. (doi:10.3390/jmse11081595)
- Najjar, Y. S., & Manaserh, Y. M. A. (2019). Aligning combined cycle power plant performance with field measurements. Arabian Journal for Science and Engineering, 44, 1657-1669. (doi:10.1007/s13369-018-3615-2)
- Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Genetic algorithm approach to design of multi-layer perceptron for combined cycle power plant electrical power output estimation. Energies, 12(22), 4352. (doi:10.3390/en12224352)
- Mohammed, M. K., Awad, O. I., Rahman, M. M., Najafi, G., Basrawi, F., Abd Alla, A. N., & Mamat, R. (2017). The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79, 459-474. (doi:10.1016/j.rser.2017.05.060)
- Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews, 56, 454-463. (doi:10.1016/j.rser.2015.11.074)
- Elhelw, M., Al Dahma, K. S., & el Hamid Attia, A. (2019). Utilizing exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285-293. (doi:10.1016/j.applthermaleng.2019.01.003)
- Behrendt, C., & Stoyanov, R. (2018). Operational characteristic of selected marine turbounits powered by steam from auxiliary oil-fired boilers. New Trends in Production Engineering, 1(1), 495-501. (doi:10.2478/ntpe-2018-0061)
- Mrzljak, V., Poljak, I., & Mrakovčić, T. (2017). Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy conversion and management, 140, 307-323. (doi:10.1016/j.enconman.2017.03.007)
- Mrzljak, V. (2018). Low power steam turbine energy efficiency and losses during the developed power variation. Tehnički glasnik, 12(3), 174-180. (doi:10.31803/tg-20180201002943)
- Si, N., Zhao, Z., Su, S., Han, P., Sun, Z., Xu, J., ... & Xiang, J. (2017). Exergy analysis of a 1000 MW double reheat ultra-supercritical power plant. Energy Conversion and Management, 147, 155-165. (doi:10.1016/j.enconman.2017.05.045)
- Mrzljak, V., Prpić-Oršić, J., & Poljak, I. (2018). Energy power losses and efficiency of low power steam turbine for the main feed water pump drive in the marine steam propulsion system. Pomorski zbornik, 54(1), 37-51. (doi:10.18048/2018.54.03)
- Elčić, Z. (1995). Steam turbines. ABB, Karlovac, National and University Library Zagreb.
- Mrzljak, V., & Poljak, I. (2019). Energy analysis of main propulsion steam turbine from conventional LNG carrier at three different loads. NAŠE MORE: znanstveni časopis za more i pomorstvo, 66(1), 10-18. (doi:10.17818/NM/2019/1.2)
- Kopac, M., & Hilalci, A. (2007). Effect of ambient temperature on the efficiency of the regenerative and reheat Çatalağzı power plant in Turkey. Applied Thermal Engineering, 27(8-9), 1377-1385. (doi:10.1016/j.applthermaleng.2006.10.029)
- Vedran, M., Ivan, L., Nikola, A., & Zlatan, C. (2020). Dual-flow dissymmetrical low pressure steam turbine energy analysis–comparison of both turbine cylinders. Machines. Technologies. Materials., 14(8), 336-339.
- Poljak, I., Mrzljak, V., Gospić, I., & Glavan, I. (2021). The Change in Low Power Steam Turbine Operating Parameters During Extractions Opening/Closing. Pomorski zbornik, 61(1), 57-78. (doi:10.18048/2021.61.05)
- Almutairi, A., Pilidis, P., & Al-Mutawa, N. (2015). Energetic and exergetic analysis of combined cycle power plant: Part-1 operation and performance. Energies, 8(12), 14118-14135. (doi:10.3390/en81212418)
- Mitrović, D., Zivkovic, D., & Laković, M. S. (2010). Energy and exergy analysis of a 348.5 MW steam power plant. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(11), 1016- 1027. (doi:10.1080/15567030903097012)
- Kostyuk, A., & Frolov, V. (1988). Steam and gas turbines. Mir Publishers.
- Mrzljak, V., Kudláček, J., Baressi Šegota, S., & Medica-Viola, V. (2021). Energy and Exergy Analysis of Waste Heat Recovery Closed- Cycle Gas Turbine System while Operating with Different Medium. Pomorski zbornik, 60(1), 21-48.(doi:10.18048/2021.60.02)
- Anđelić, N., Mrzljak, V., Lorencin, I., & Baressi Šegota, S. (2020). Comparison of exergy and various energy analysis methods for a main marine steam turbine at different loads. Pomorski zbornik, 59(1), 9-34. (doi:10.18048/2020.59.01)
- Kanoğlu, M., Çengel, Y. A., & Dinçer, İ. (2012). Efficiency evaluation of energy systems. Springer Science & Business Media.
- Poljak, I., & Mrzljak, V. (2023). Thermodynamic Analysis and Comparison of Two Marine Steam Propulsion Turbines. NAŠE MORE: znanstveni časopis za more i pomorstvo, 70(2), 0-0. (doi:10.17818/NM/2023/2.2)
- Mrzljak, V., Poljak, I., Jelić, M., & Prpić-Oršić, J. (2023). Thermodynamic Analysis and Improvement Potential of Helium Closed Cycle Gas Turbine Power Plant at Four Loads. Energies, 16(15), 5589. (doi:10.3390/en16155589)
- Poljak, I., Mrzljak, V., Senčić, T., & Pastorčić, D. (2024). Isentropic and exergy analyses of marine steam turbine segments at several loads. Scientific Journal of Maritime Research-Pomorstvo, 38(1). (doi:10.31217/p.38.1.8)
- Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
- Koroglu, T., & Sogut, O. S. (2018). Conventional and advanced exergy analyses of a marine steam power plant. Energy, 163, 392-403. (doi:10.1016/j.energy.2018.08.119)
- Mrzljak, V., Jelić, M., Poljak, I., & Prpić-Oršić, J. (2023). Analysis and Comparison of Main Steam Turbines from Four Different Thermal Power Plants. Pomorstvo, 37(1), 58-74. (doi:10.31217/p.37.1.6)
- Wilding, P. R., Murray, N. R., & Memmott, M. J. (2020). The use of multi-objective optimization to improve the design process of nuclear power plant systems. Annals of Nuclear Energy, 137, 107079. (doi:10.1016/j.anucene.2019.107079)
- Anđelić, N., Šegota, S. B., & Mrzljak, V. (2025). A comprehensive study on symbolic expressions for fault detection-classification in photovoltaic farms. Applied energy, 383, 125370. (doi:10.1016/j.apenergy.2025.125370)