INNOVATIVE SOLUTIONS

A review of modeling pem fuel cells for monitoring applications

  • 1 Jožef Stefan International Postgraduate School, Ljubljana, Slovenia

Abstract

Low operating temperature, compactness, high efficiency as well as low to zero emissions are features that cause large interest in Proton Exchange Membrane (PEM) fuel cells and are reasons that application of this technology is considered in many areas. However, for a massive deployment of the PEM fuel cell technology to the market, good control and monitoring are mandatory to increase efficiency and durability. For the control and monitoring of PEM fuel cell systems, appropriate system models are required. In this study, a review of modeling approaches to the PEM fuel cell systems is considered

Keywords

References

  1. F. Barbir, PEM FUEL CELLS : Theory and Practice - 1th edition. Boston: Academic Press. (2005)
  2. O. Z. Sharaf and M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renew. Sustain. Energy Rev., vol. 32, pp. 810–853, (2014), doi: 10.1016/j.rser.2014.01.012
  3. P. Moldrik and R. Chvalek, PEM fuel cells - The basic characteristics, 2011 10th Int. Conf. Environ. Electr. Eng. EEEIC.EU 2011 - Conf. Proc., pp. 1–4, (Rome, Italy 2011), doi: 10.1109/EEEIC.2011.5874673
  4. Y. Wang, D. F. Ruiz Diaz, K. S. Chen, Z. Wang, and X. C. Adroher, Materials, technological status, and fundamentals of PEM fuel cells – A review, Mater. Today, vol. 32, no. February, pp. 178–203, (2020), doi: 10.1016/j.mattod.2019.06.005
  5. Hydrogen – Tracking Energy Integration – Analysis - IEA. [Online]. Available: https://www.iea.org/reports/tracking-energy-integration/hydrogen. [Accessed: 15-Mar-2020]
  6. I. Dincer and C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy, vol. 40, no. 34, pp. 11094–11111, (2014), doi: 10.1016/j.ijhydene.2014.12.035
  7. U. Lucia, Overview on fuel cells, Renew. Sustain. Energy Rev., vol. 30, pp. 164–169, (2014), doi: 10.1016/j.rser.2013.09.025
  8. K. Ondrejička, V. Ferencey, and M. Stromko, Modeling of the air-cooled PEM fuel cell, IFAC-PapersOnLine, vol. 52, no. 27, pp. 98–105, (2019), doi: 10.1016/j.ifacol.2019.12.740
  9. A. M. Niroumand, Challenges and Opportunities in PEM Fuel Cell Systems, Integr. Syst. Des. Technol. pp.171-183, Chennai: Springer 2011, doi: 10.1007/978-3-642-17384-4.
  10. R. L. Edwards, Modeling Proton Exchange Membrane Fuel Cells — A Review, in 50 Years of CFD in Engineering Sciences, pp. 513-547, Singapore: Springer (2020), doi: 10.1007/978-981-15-2670-1_15
  11. M. B. Karimi, F. Mohammadi, and K. Hooshyari, Recent approaches to improve Nafion performance for fuel cell applications: A review, Int. J. Hydrogen Energy, vol. 44, no. 54, pp. 28919–28938, (2019), doi: 10.1016/j.ijhydene.2019.09.096.
  12. M. L. S. Carnevali, Modelling and Control of PEM Fuel Cells, Doctoral Disertation - Politechnic University of Catalonia, (Barcelona, Spain 2017).
  13. A. Ozden, S. Shahgaldi, X. Li, and F. Hamdullahpur, A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs, Prog. Energy Combust. Sci., vol. 74, pp. 50–102, (2019), doi: 10.1016/j.pecs.2019.05.002
  14. A. Hermann, T. Chaudhuri, and P. Spagnol, Bipolar plates for PEM fuel cells: A review, Int. J. Hydrogen Energy, vol. 30, no. 12, pp. 1297–1302, (2005), doi: 10.1016/j.ijhydene.2005.04.016
  15. Y. Manoharan et al., Hydrogen fuel cell vehicles; Current status and future prospect, Appl. Sci., vol. 9, no. 11, (2019), doi: 10.3390/app9112296
  16. J. H. Wee, Applications of proton exchange membrane fuel cell systems, Renew. Sustain. Energy Rev., vol. 11, no. 8, pp. 1720–1738, (2007), doi: 10.1016/j.rser.2006.01.005
  17. V. Liso, M. P. Nielsen, S. K. Kær, and H. H. Mortensen, Thermal modeling and temperature control of a PEM fuel cell system for forklift applications, Int. J. Hydrogen Energy, vol. 39, no. 16, pp. 8410–8420, (2014), doi: 10.1016/j.ijhydene.2014.03.175
  18. F. C. Wang and Y. S. Chiang, Design and control of a PEMFC powered electric wheelchair, Int. J. Hydrogen Energy, vol. 37, no. 15, pp. 11299–11307, (2012), doi: 10.1016/j.ijhydene.2012.04.156
  19. T. Yalcinoz, A Dynamic Model and Analysis of PEM Fuel Cells for an Electric Bicycle, Proc. - 2018 IEEE Int. Conf. Environ. Electr. Eng. 2018 IEEE Ind. Commer. Power Syst. Eur. EEEIC/I CPS Eur. 2018, vol. 2, no. 1, pp. 1–5, (2018), doi: 10.1109/EEEIC.2018.8493821
  20. F. Pizzuti and C. Seguiti, Power supply to Telecom Stations through FC technology, INTELEC, Int. Telecommun. Energy Conf., vol. 2014-Janua, no. January, pp. 1–3, (Vancouver, Canada 2014), doi: 10.1109/intlec.2014.6972206
  21. S. V. Puranik, A. Keyhani, and F. Khorrami, State-space modeling of proton exchange membrane fuel cell, IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 804–813, (2010), doi: 10.1109/TEC.2010.2047725
  22. N. Rakesh, M. Shaneeth, and S. Jayaraj, One dimensional modelling of oxygen diffusion in a gas diffusion layer of PEM Fuel Cell, 2012 Int. Conf. Green Technol. ICGT 2012, pp. 340–342, (Trivandrum, India 2012), doi: 10.1109/ICGT.2012.6477997
  23. Y. J. Sohn, S. D. Yim, G. G. Park, M. Kim, S. W. Cha, and K. Kim, PEMFC modeling based on characterization of effective diffusivity in simulated cathode catalyst layer, Int. J. Hydrogen Energy, vol. 42, no. 18, pp. 13226–13233, (2017), doi: 10.1016/j.ijhydene.2017.04.036
  24. F. Gao, B. Blunier, A. Miraoui, and A. El Moudni, A multiphysic dynamic 1-D model of a proton-exchange-membrane fuel-cell stack for real-time simulation, IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1853–1864, (2010), doi: 10.1109/TIE.2009.2021177
  25. D. Zhou, F. Gao, A. Al-Durra, E. Breaz, A. Ravey, and A. Miraoui, Development of a Multiphysical 2-D Model of a PEM Fuel Cell for Real-Time Control, IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4864–4874, (2018), doi: 10.1109/TIA.2018.2839082
  26. R. B. Ferreira, D. S. Falcão, V. B. Oliveira, and A. M. F. R. Pinto, 1D + 3D two-phase flow numerical model of a proton exchange membrane fuel cell, Appl. Energy, vol. 203, pp. 474–495, (2017), doi: 10.1016/j.apenergy.2017.06.048
  27. M. Grötsch and M. Mangold, A two-phase PEMFC model for process control purposes, Chem. Eng. Sci., vol. 63, no. 2, pp. 434–447, (2008), doi: 10.1016/j.ces.2007.09.017
  28. W. Q. Tao, C. H. Min, X. L. Liu, Y. L. He, B. H. Yin, and W. Jiang, Parameter sensitivity examination and discussion of PEM fuel cell simulation model validation. Part I. Current status of modeling research and model development, J. Power Sources, vol. 160, no. 1, pp. 359– 373, (2006), doi: 10.1016/j.jpowsour.2006.01.078
  29. D. Hissel, C. Turpin, S. Astier, L. Boulon, and a Bouscayrol, A review of existing modelling methodologies for PEM fuel cell systems, J. Fuel Cell Sci. and Techn., no. October 2015, (2008)
  30. J. T. Pukrushpan, A. G. Stefanopoulou, and H. Peng, Modeling and control for PEM fuel cell stack system, Proc. Am. Control Conf., vol. 4, pp. 3117–3122, (Anchorage, Alaska 2002), doi: 10.1109/acc.2002.1025268
  31. J. T. Pukrushpan, A. G. Stefanopoulou, and S. Varigonda, Control-Oriented Model of an Integrated Fuel Cell Stack and Fuel Processor System, IFAC Proc. Vol., vol. 37, no. 22, pp. 457–462, (2004), doi: 10.1016/s1474- 6670(17)30386-5.
  32. J. Zhang et al., Modelling a polymer electrolyte membrane fuel cell system with anodic and cathodic exhaust gas recirculation, 3rd Conf. Veh. Control Intell. CVCI 2019, pp. 1–6, (Hefei, China 2019), doi: 10.1109/CVCI47823.2019.8951700
  33. S. P. Philipps and C. Ziegler, Computationally efficient modeling of the dynamic behavior of a portable PEM fuel cell stack, J. Power Sources, vol. 180, no. 1, pp. 309–321, (2008), doi: 10.1016/j.jpowsour.2008.01.089
  34. L. Deng, X. R. Deng, N. Ma, and P. Wei, Dynamic modeling of a PEM fuel cell stack thermal system, Proc. - 2nd IEEE Int. Conf. Adv. Comput. Control. ICACC 2010, vol. 2, pp. 473–477, (Shenyang, China 2010), doi: 10.1109/ICACC.2010.5486633
  35. P. Moçotéguy, F. Druart, Y. Bultel, S. Besse, and A. Rakotondrainibe, Monodimensional modeling and experimental study of the dynamic behavior of proton exchange membrane fuel cell stack operating in dead-end mode, J. Power Sources, vol. 167, no. 2, pp. 349–357, (2007), doi: 10.1016/j.jpowsour.2007.02.028
  36. C. A. Ramos-Paja, R. Giral, L. Martinez-Salamero, J. Romano, A. Romero, and G. Spagnuolo, A PEM fuel-cell model featuring oxygen-excess-ratio estimation and power-electronics interaction, IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1914–1924, (2010), doi: 10.1109/TIE.2009.2026363
  37. A. Saengrung, A. Abtahi, and A. Zilouchian, Neural network model for a commercial PEM fuel cell system, J. Power Sources, vol. 172, no. 2, pp. 749–759, (2007), doi: 10.1016/j.jpowsour.2007.05.039
  38. M. Dou et al., Behaviors of proton exchange membrane fuel cells under oxidant starvation, J. Power Sources, vol. 196, no. 5, pp. 2759–2762, (2011), doi: 10.1016/j.jpowsour.2010.11.005
  39. O. Herrera, W. Mérida, and D. P. Wilkinson, Sensing electrodes for failure diagnostics in fuel cells, J. Power Sources, vol. 190, no. 1, pp. 103–109, (2009), doi: 10.1016/j.jpowsour.2008.08.034
  40. F. Barbir, H. Gorgun, and X. Wang, Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells, J. Power Sources, vol. 141, no. 1, pp. 96– 101, (2005), doi: 10.1016/j.jpowsour.2004.08.055
  41. X. Cheng et al., A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation, J. Power Sources, vol. 165, no. 2, pp. 739–756, (2007), doi: 10.1016/j.jpowsour.2006.12.012
  42. M. Mench, E. C. Kumbur, and T. N. Veziroglu, Polymer Electrolyte Fuel Cell Degradation. Boston: Academic Press. (2011)

Article full text

Download PDF