INNOVATIVE SOLUTIONS

Study on HD cameras with CMOS sensor degradation upon ionizing radiation exposition

  • 1 Institute of Metal Science, Equipment and Technology with Hydroaerodynamic Center at Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract

In this paper we have exposed 3 HD cameras with CMOS sensor in long time experiment at different doses and exposition time with γ radiation from 2 sources of ionizing radiation – cobalt 60 (Co60) and cesium 137 (Cs137) at room temperature imitating the working conditions of “hot cell” premises. All components of the used camera are without radiation reinforcement, excluding the lenses. During the experiment, we found degradation of the irradiated cameras. As the absorbed dose increases, the image becomes brighter. Furthermore, experimental results demonstrated decreasing in signal-noise ratio (SNR) with increasing the absorbed dose. We confirmed that the HD
industrial cameras can operate in ionizing radiation environment with moderate decrease of

Keywords

References

  1. Nie K., Yin Z., Xu J. A fast correlated multiple sampling technique based on 12-bit SAR ADC with digital calibration for low-noise CMOS image sensor. Microelectron. J. 2017;59:47–54. doi: 10.1016/j.mejo.2016.11.010. [CrossRef]
  2. Liu Y., Xing D., Wang Y., Chen J. A low power dissipation high-speed CMOS image sensor with column-parallel sigma-delta ADCs. Microelectron. J. 2015;46:860–868. doi: 10.1016/j.mejo.2015.06.021. [CrossRef]
  3. Kawahito S., Seo M. Noise Reduction Effect of Multiple- Sampling-BasedSignal-Readout Circuits forUltra-Low Noise CMOSImage Sensors. Sensors. 2016;16:1867 doi: 10.3390/s16111867. [PMC free article] [PubMed] [CrossRef]
  4. Yu C., Nie K., Xu J., Gao J. A Low Power Digital Accumulation Technique for Digital-Domain CMOS TDI Image Sensor. Sensors. 2016;16:1572 doi: 10.3390/s16101572. [PMC free article] [PubMed] [CrossRef]
  5. Snoeys W., Rinella G., Hillemanns H., Kugathasan T., Mager M., Musa L., Riedler P., Reidt F., Hoorne J., Fenigstein A., Leitner T. A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance. Nucl. Instrum. Methods Phys. Res. A. 2017;871:90–96. doi: 10.1016/j.nima.2017.07.046. [CrossRef]
  6. Mamdy B., Lu G., Roy F. P-type BSI Image Sensor with Active Deep Trench Interface Passivation for Radiation-hardened Imaging Systems. Procedia Eng. 2016;168:176–180. doi: 10.1016/j.proeng.2016.11.211. [CrossRef]
  7. Yang X., Wang Y., Du B., Yu C. Total dose radiation effects of hybrid bulk/SOI CMOS active pixel with buried channel SOI source follower. Microelectron. J. 2014;45:477–481. doi: 10.1016/j.mejo.2014.02.021. [CrossRef]
  8. Michail C., Valais I., Seferis I., Kalyvas N., Fountos G., Kandarakis I. Experimental measurement of a high resolution CMOS detector coupled toCsIscintillators under X-ray radiation. Radiat. Meas. 2015;74:39–46. doi: 10.1016/j.radmeas.2015.02.007. [CrossRef]
  9. Pérez M., Lipovetzky J., Haro M., Sidelnik I., Blostein J., Bessia F., Berisso M. Particle detection and classification using commercial off the shelf CMOS image sensors. Nucl. Instrum. Methods Phys. Res. A. 2016;827:171–180. doi: 10.1016/j.nima.2016.04.072. [CrossRef]
  10. Uher J., Holy T., Jakubek J., Lehmann E., Pospisil S., Vacik J. Performance of a pixel detector suited for slow neutrons. Nucl. Instrum. Methods Phys. Res. A. 2005;542:283–287. doi: 10.1016/j.nima.2005.01.149. [CrossRef]
  11. Lee C., Huang H., Yeh H. The Development of Sun-Tracking System Using Image Processing. Sensors. 2013;13:5448–5459. doi: 10.3390/s130505448. [PMC free article] [PubMed] [CrossRef]
  12. Goiffon V., Magnan P., Saint-Pé O., Bernard F., Rolland G. Ionization versus displacement damage effects in proton irradiated CMOS sensors manufactured in deep submicron process. Nucl. Instrum. Methods Phys. Res. A. 2009;610:225–229. doi: 10.1016/j.nima.2009.05.078. [CrossRef]
  13. Servoli L., Bizzarri F., Passeri D. Continuous measurement of radiation damage of standard CMOS imagers. Nucl. Instrum. Methods Phys. Res. A. 2011;658:137–140. doi: 10.1016/j.nima.2011.04.059. [CrossRef]
  14. Wang Z., Ma Y., Liu J., Xue Y., He B., Yao Z., Huang S., Liu M., Sheng J. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates. Nuc l. Instrum. Methods Phys. Res. A. 2016;820:89–94. doi: 10.1016/j.nima.2016.03.006. [CrossRef]
  15. European Machine Vision Association (EMVA) EMVA 1288. [(accessed on 1 December 2017)]; Available online: http://www.emva.org/standards-technology/emva-1288/
  16. Y. Mirchev, K. Kalchevska, М. Mihovski, А.Tucova. Physical basis, methods, materials and means for capillary non-destructive control.2019. Format 160х230, pp. 140. ISBN 978-619-90662-2-5.
  17. K. Kalchevska, Y. Mirchev, М. Mihovski. Phys ical basis, methods, means and technologies for visual-optical and measuring non-destructive control. Sofia, 2020, Prof. Marin Drinov Publishing House of BAS. ISBN 978-619-245-038-0. pp. 144
  18. Ordinance №11 of 22.10.2018 on health standards and requirements for work in an environment of ionizing radiation

Article full text

Download PDF