Influence of polymer molar mass on the properties membranes whit graphene oxide

    Machines. Technologies. Materials., Vol. 13 (2019), Issue 6, pg(s) 277-280

    The aim of the study was to assess the influence of the polymer molar mass on the properties of polymeric membranes produced with the addition of carbon nanostructures (commercial graphene oxide, GO). The membrane support layer was made from polysulfone (PSU) dissolved in dimethylformamide (DMF). The polymer matrix was formed from polyvinylidene fluoride (PVDF) dissolved in dimethylacetamide (DMAC). PVDF, serving as the base polymer, was purchased in two different physical forms, i.e granules with a molar mass of 530,000 g/mol and powder with a molar mass of 534,000 g/mol. The membranes were prepared via wet phase inversion, with or without the addition of GO to volume of the polymer matrix. The experiments helped to determine the thickness, tensile strength and contact angle of the produced membranes. Hydrodynamic studies allowed calculating the volumetric permeation flux and total resistance of both the reference membranes and the membranes containing GO was evaluated using a laboratory OSMONICS KOCH ultrafiltration unit.


    Machines. Technologies. Materials., Vol. 10 (2016), Issue 3, pg(s) 44-47

    The aim of this work is numerical modeling of the hydrodynamics and heat transfer of a shell-and-tube heat exchanger. For the purpose of the study a 3D model with geometric dimensions corresponding to real was created. The simulations under the same boundary conditions as experiment were carried out. The independence of solution by the density and the shape of the mesh were investigated. For verification the experimental values for fluid temperatures at the outlets from the apparatus were used. The simulations of different operation modes in the apparatus were carried out. A modification in the geometry with the aim of raising the temperature on the cold fluid at the outlet was made. Results on vectors, velocity and temperature distribution in the apparatus were obtained. On the basis of the obtained results some design changes of the apparatus in order to improve the hydrodynamics have been proposed. The obtained results can be successfully used in the design, optimization and constructing of this type apparatus, as well as in the educational process.