MATERIALS
Effect of technological parameters on the structure and physico-mechanical properties of Fe-FeCr800 system composite
The article investigates the influence of technology and technological parameters of manufacturing on the structure, phase composition and physical and mechanical properties of the Fe-FeCr800 composite system. It was established that the determining factor in phase and structure formation is the manufacturing technology, while vacuum sintering and hot forging have their own optimal technological parameters. At the same time, hot forging makes it possible to obtain a composite with a higher microhardness of structural components due to a change in the content of component components. The results of the research also showed that the preheating time (for 20 min.), as well as thermomechanical treatment, is sufficient for the phase formation process, in particular, with the release of carboboride phases of the type Me3CB and Me3(CB)2, while the densification processes are intensified, which makes it possible to obtain a material with lower residual porosity. Analysis of mechanical tests showed that vacuum sintering makes it possible to obtain composites with higher mechanical properties due to the active interaction between the components of the composite. However, high-temperature annealing after hot deformation will allow for a composite with high mechanical properties.