• Numerical modelling of flows along the nanostructured surface

    Materials Science. Non-Equilibrium Phase Transformations., Vol. 4 (2018), Issue 4, pg(s) 129-132

    Not all the properties of structured surfaces can be predicted just through using stationary solutions. Hydrophilic and hydrophobic qualities distinctly manifest themselves when surface contacts with mobile liquid; besides, shape of surface projections could variously influence flow velocity in different directions forming turbulences behind projections (even cavitation zones if flow is very fast). The following properties of liquids are particularly important for these processes: dynamic and kinematic viscosity, density, flow velocity and characteristic flow size, which represents itself contact surface relation to cross-sectional area. Relationships between these parameters characterize flowability of the particular substance and can be expressed as Reynolds number. Solutions of kinetic equations could be helpful to develop understanding on particular fluid’s flowability in the close vicinity of the surface.
    Examples discussed in this paper can be used not only in nano- and microstructures related research but also for high school and university students training in physics and natural sciences. Comprehension development about flow rate diferences in various distances from tube walls should be considered as one of problems for successful acquiring of hydrodynamics topics. Even use of transparent tubes is not helpful enough for appropriate demonstration of tinted liquid speed distribution in flow’s cross-sectional area – laminar flow when Reynolds number value is low and turbulent flow when it is high.