• INNOVATIVE SOLUTIONS

    LOW-TEMPERATURE DISTRICT HEATING WITH DECENTRALIZED GENERATION BY HEAT PUMPS AT A RAILWAY STATION: OPTIMIZING THE SYSTEM AND CALCULATING GREENHOUSE GAS EMISSIONS

    Innovations, Vol. 6 (2018), Issue 2, pg(s) 82-84

    This paper discusses a heat pump subsystem within an existing high-temperature DH system located at a railway station in Omsk, Russia. The goal is to increase the efficiency of an existing high-temperature DH system by describing decentralized heat generation from an environmental point of view. We obtain a balance method whereby the heat loss (or the thermal energy loss) is expressed dependent on the supply and return temperatures so as to reduce operating costs of heat supply. The outcome of calculating the heat loss by this method is a relation that is valid typically for all DH networks. Findings beneath show that switching to a low-temperature DH can decrease operating costs and increase overall heat production efficiency. The reason for the latter is a known logarithmic heat flux-temperature correlation. This paper concludes that the idea of decentralized generation has a great potential for the future, as the implementation of this concept is closely related to a low-temperature DH.

  • MECHANIZATION IN AGRICULTURE

    THEORETICAL STUDY TO DETERMINE THE STANDARD SIZE RANGE OF AGRICULTURAL TRACTORS

    Mechanization in agriculture & Conserving of the resources, Vol. 63 (2017), Issue 3, pg(s) 92-94

    Since the tractor is the main energy source in agriculture, the state with highly developed agrarian production, tractor and agricultural machine building should have a fairly clear and consistent policy in the field of organizing the production and supply to agricultural producers of a wide range of tractors for various purposes. Such a policy is based on the type of mobile energy resources, i.e. tractors, based on a deep analysis and study of the volume of agricultural production, the needs for mechanized technologies, the theory of the operation of agricultural machines, the overall assessment of the development of high-tech agriculture. The purpose of this study is to develop theoretical bases for calculating the type of agricultural tractors based on an optimization of technical and economic analysis, taking into account the need for a qualitative and timely implementation of the entire closed set of works in agricultural production. During the research methods of machine use in agriculture, higher mathematics, economics, compilation of programs and numerical calculations on PC were used. The results of the study showed that the classification of tractors should be carried out not according to traction power (as is done in most countries of the world), but by the nominal traction force developed by them. It has been established that this gives a more accurate representation of the operational properties of an energy tool, which in turn allows for the very accurate and correct selection of complexes of appropriate agricultural machinery and implements for its effective operation. The presented theoretical approaches allow to determine with a high degree of accuracy the type of agricultural tractors for any country.