MATHEMATICAL MODELLING OF TECHNOLOGICAL PROCESSES AND SYSTEMS
Determination of empirical coefficients of heat dissipation characteristics by optimization methods for a spark-ignited car engine
For the development of new engines, as well as to obtain the correct results from mathematical modeling, numerical methods should be used, with the help of which verification of mathematical models takes place. This approach can significantly reduce the material and time costs at the development stage. The influence of the optimization method used in processing the experimental data of engine indexing to obtain semi-empirical coefficients of the form Wiebe is explored. A comparison is made of the rate of calculation of the coefficients of the Wiebe formula using brute force and gradient methods. In both methods, the integral using the modulus of the difference between squares of the experimental and calculated dependences is chosen as the target function. Analysis of the rate of calculation of the coefficients of the Wiebe formula showed the need to use the combined use of both methods: the global minimum of the objective function by the method of brute force with a large step and near the optimal point – the gradient method