• Simulation of three-dimensional cavitation in radial divergent test section using different mass transfer models

    Mathematical Modeling, Vol. 3 (2019), Issue 1, pg(s) 21-24

    Cavitation is a phenomenon of liquid transition to vapour which occur at sudden drop in pressure. It can be studied experimentally using visualization techniques or numerically using numerical packages. In order to numerically predict cavitation Reynolds Averaged Navier Stokes equations and an additional transport equation for the liquid volume fraction can be used. In the additional transport equation mass transfer rate due to cavitation is modelled using different mass transfer models. In the presented paper cloud cavitation in radial divergent test section was studied numerically using three different widespread mass transfer models. The models used were Zwart, Kunz and Singhal mass transfer models. Zwart model is a native model of ANSYS CFX program while other two were implemented to the program. Steady state and transient RANS simulations were performed using the simulation program, standard k-e turbulence model and scalable wall functions. The results of numerical simulations were compared with the results of experimental measurements performed at the University of Grenoble. Based on the presented results we concluded that all mass transfer models correctly predict the area of cloud cavitation formation.