DOMINANT TECHNOLOGIES IN “INDUSTRY 4.0”
Obliteration of surface defects in 3D printing of metals by reactive electro spark surface modification
In this work the possibilities of reducing the roughness and defects of surfaces obtained by 3D printing with selective laser melting (SLM), via reactive electrospark surface modification (ESD) with low-melting AlSi alloys has been shown. The influence of the energy parameters of the ESD process on the roughness, microstructure, microhardness and performance characteristics of the coatings has been studied. Surfaces with new phases and ultrafine crystal-amorphous structure with particle sizes from micro to nano level, with new relief, with thickness up to 15 μm and microhardness up to 11 GPa were obtained, as the initial SLM roughness from Ra = 8-11μm is reduced to Ra=3-5 μm. Possibilities for control of the characteristics of the coatings and purposeful synthesis of new phases by changing the parameters of the spark discharge have been established. The parameters of the ESD process, which provide simultaneous reduction of SLM surface roughness, removal and erasure of the defects and targeted reactive synthesis of new phases with high performance properties and wear resistance, are defined and optimized.