MATHEMATICAL MODELLING OF TECHNOLOGICAL PROCESSES AND SYSTEMS

SIMULATION OF THE THERMAL STABILITY AND MELTING OF THE Ag@Pd, Au@Pd BIMETALLIC NANOPARTICLES

  • 1 Sumy State University, Sumy, Ukraine

Abstract

Within the framework of the molecular dynamics methods the simulation of the temperature stability of the metallic nanoparticles with the core-shell structure was performed and the melting temperature of the sample was determined. During the simulation of the dynamic behavior of nanoparticle the calculation of forces of interatomic interactions was carried out within the embedded atom method. To simulate the melting process the temperature of the sample was gradually increased by scaling the corresponding atomic velocities using the Berendsen thermostat. The Lindemann index was used as a numerical parameter describing changes in the structure of the nanoparticle. According to the results of the study, the temperature dependences of the Lindeman index and the average potential energy were obtained, as well as the radial distribution functions for the nanoparticles. From the simulation results, atomistic configurations of the sample were built and the dynamics of changes in its structure was investigated. Spatial distribution of the atoms on Lindeman index within the volume of the sample around melting temperature was also calculated.

Keywords

References

  1. Chaudhuri R. Gh. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications / R. Gh. Chaudhuri, S. Paria // Chem. Rev. – 2012. – Vol. 112, № 4. –P. 2373–2433.
  2. Alayoglu S. Surface composition and catalytic evolution of AuxPd1−x (x = 0.25, 0.50 and 0.75) nanoparticles under CO/O2 reaction in torr pressure regime and at 200◦C / S. Alayoglu, F. Tao, V. Altoe [et al.] // Catal. Lett. – 2011. – Vol. 141, № 5. – P. 633– 640.
  3. Yu W. Y. Selective hydrogen production from formic acid decomposition on Pd-Au bimetallic surfaces / W.-Y. Yu, G. M. Mullen, D. W. Flaherty [et al.] // J. Am. Chem. Soc. – 2014. – Vol. 136, № 31. – P. 11070–11078.
  4. Mejia-Rosales S. J. Two-stage melting of Au-Pd nanoparticles / S. J. Mejia-Rosales, C. Fernandez-Navarro, E. Perez-Tijerina [et al.] // Phys. Chem. B. – 2006. – Vol. 110, № 26. – P. 12884–12889.
  5. Tsuji M. Crystal Structures and growth mechanisms of Au@Ag core-shell nanoparticles prepared by the microwave-polyol method / M. Tsuji, N. Miyamae, S. Lim [et al.] // Cryst. Growth Des. – 2006. – Vol. 6, № 8. – Р. 1801–1807.
  6. Baek S. W. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells / S. W. Baek, G. Park, J. Noh [et al.] // ACS Nano. – 2014. – Vol. 8, № 4. – P. 3302–3312.
  7. Мудрак І. М. Електрофізичні та теплофізичні властивості наносистеми із структурою «ядро-оболонка» AgI/SiO2 / І. М. Мудрак, Л. П. Сторожук, С. М. Махно [та ін.] // Наносистеми, наноматеріали, нанотехнології. – 2012. – Т. 10, № 4. –P. 819827.
  8. Abdel-Fattah W. I. Synthesis of biogenic Ag@Pd core-shell nanoparticles having anti-cancer/anti-microbial functions / W. I. Abdel-Fattah, M. M. Eid, Sh. I. Abd El-Moez [et al.] // Life Sci. – 2017. – Vol. 183. – P. 28–36.
  9. Borysiuk V. Atomistic simulation of the melting behavior of the Au-Ag nanoparticles with core-shell structure / V. Borysiuk, I. Lyashenko // IEEE 35th International Conference on Electronics and Nanotechnology (ELNANO-2015), 2015, Kyiv – P. 155–157.
  10. U. Shvets. Elastic Properties of Au, Ag, and Core-shell Au@Ag Nanorods from Molecular Dynamics Simulations // U. Shvets, В. Natalich, V. Borysiuk / J. NANO- ELECTRON. PHYS. – 2019. – Vol. 11, – P. 04026:1–5.
  11. Наталіч Б. Моделювання термічної стабільності та плавлення біметалевої наночастинки Ag@Pd / Б. Наталіч, У. Швець, В. Борисюк // Вісник Львівського університету. Серія фізична. – 2019. – № 56. – С. 91–102.
  12. Yang Zh. Molecular dynamics simulation of the melting behavior of Pt-Au nanoparticles with core-shell structure / Zh. Yang, X. Yang, Zh. Xu // J. Phys. Chem. C. – 2008. – Vol. 112, № 13. – P. 4937–4947.
  13. Lyashenko I. A. Statistical analysis of self-similar behavior in the shear induced melting model / I. A. Lyashenko, V. N. Borysiuk, N. N. Manko // Cond. Matt. Phys. – 2014. – Vol. 17. – P. 23003: 1– 11.
  14. Olemskoi A. I. Hierarchical condensation near phase equilibrium / A. I. Olemskoi, O. V. Yushchenko, V. N. Borisyuk [et al.] // Physica A: Statistical Mechanics and its Applications. – 2012. – Vol. 391, P. 3277–3284.
  15. Stukowski A. Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool / A. Stukowski // Modelling Simul. Mater. Sci. Eng. – 2010. – Vol. 18, № 1. – P. 015012.
  16. Berendsen H. J. C. Molecular dynamics with coupling to an external bath / H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren [et al.] // J. Chem. Phys. – 1984. – Vol. 81, № 8. – P. 3684.
  17. Baskes M. I. Modified embedded-atom potentials for cubic materials and impurities / M. I. Baskes // Phys. Rev. B. – 1992. – Vol. 46, № 5. – P. 2727.
  18. Plimpton S. Fast parallel algorithms for short-range molecular dynamics / S. Plimpton // J. Comput. Phys. – 1995. – Vol. 117, № 1. – P. 1–19.
  19. Zhou X.W. Atomic scale structure of sputtered metal multilayers / X. W. Zhou, H. N. G. Wadley, R. A. Johnson [et al.] // Acta Mater. – 2001. – Vol. 49, № 19. – 4005–4015.
  20. Zhang K. Melting and premelting of carbon nanotubes / K. Zhang, G. M. Stocks, J. Zhong // Nanotechnology. – 2007. – Vol. 18, № 28. – P. 285703.
  21. Rapaport D. C. The art of molecular dynamics simulation / D. C. Rapaport // NY: Cambridge University Press. – 2004.

Article full text

Download PDF