MATHEMATICAL MODELLING OF TECHNOLOGICAL PROCESSES AND SYSTEMS

P-BOX UNCERTAINTY QUANTIFICATION OF QUEUES USING THE TAYLOR SERIES EXPANSION

  • 1 Applied Mathematical Laboratory (LMA), Department of Mathematics , Faculty of Exact Sciences –University of Bejaia, Algeria
  • 2 Research Unit LaMOS, Department of Operation Research, Faculty of Exact Sciences –University of Bejaia, Algeria

Abstract

In this work, firstly we opted, for the global sensitivity analysis using the first order Sobol indices of simulated by the Monte Carlo method, to see and determine the parameters to which the stationary distribution of model GI/M/1/N with negative arrivals is sensitive. Secondly, we used the Monte Carlo method to propagate the uncertainty of the parameters of the stationary distribution of GI/M/1/N queuing model with negative arrivals, while estimating its statistics (expectation and variance).

Keywords

References

  1. [1] Abbas, K., Heidergott, B. and Aïssani, D. A Functional Approximation for the M/G/1/N Queue. Discrete Event Dynamic Systems , pages 93–104, 2013.
  2. Bayer, N., Boxma, O.J.WienerHopf analysis of an M/G/1 queue with negative customers and of a related class of random walks, Queueing Syst.23 (1996) 301316.
  3. Boucherie, R.J. , Boxma, O.J. The workload in the M/G/1 queue with work removal, Probab. Eng.Inform.Sci.10 (1995) 261277.
  4. Cao, X.R. Realization Probabilities: The Dynamics of Queueing Systems, Springer Verlag, New York, 1994.
  5. Gelenbe,E. Product-form queueing networks with negative and positive customers, J.Appl. Probab.28 (1991) 656663.
  6. Boucherie, R.J. , Boxma, O.J. The workload in the M/G/1 queue with work removal, Probab. Eng.Inform.Sci.10 (1995) 261277.
  7. Heidergott, B., Hordijk, A.: Taylor series expansions for stationary Markov chains. Advances in Applied Probability 35, 1046–1070 (2003).
  8. Jain, G., Sigman, K. A pollaczek-Khintchine formula for M/G/1 queues with disasters, J.Appl. Probab.33 (1996) 11911200.
  9. Harrison, P.G., Pitel, E. The M/G/1 queue with negative customers, Adv. Appl Probab. 28 (1996) 540566.
  10. Harrison, P.G., Patel, N.M. Pitel, E. Reliability modelling using G-queues, Eur. J. Oper. Res. 126 (2000) 273287.
  11. Yang, W.S., Chae, K.C. A note on the GI/M/1 queue with poisson negative arrivals, J. Appl. Probab.38 (2001) 10811085.

Article full text

Download PDF