Determination of empirical coefficients of heat dissipation characteristics by optimization methods for a spark-ignited car engine

  • 1 MGTU N.E. Bauman, Moscow, Russia


For the development of new engines, as well as to obtain the correct results from mathematical modeling, numerical methods should be used, with the help of which verification of mathematical models takes place. This approach can significantly reduce the material and time costs at the development stage. The influence of the optimization method used in processing the experimental data of engine indexing to obtain semi-empirical coefficients of the form Wiebe is explored. A comparison is made of the rate of calculation of the coefficients of the Wiebe formula using brute force and gradient methods. In both methods, the integral using the modulus of the difference between squares of the experimental and calculated dependences is chosen as the target function. Analysis of the rate of calculation of the coefficients of the Wiebe formula showed the need to use the combined use of both methods: the global minimum of the objective function by the method of brute force with a large step and near the optimal point – the gradient method



  1. Delprete, Cristiana, Fabio Pregno, and Carlo Rosso. "Internal combustion engine design: a practical computational methodology." SAE International Journal of Engines 2, no. 1 (2009): 263-270.
  2. Devaraj, A., I. Vinoth Kanna, K. Manikandan, and Jishuchandran. "Impact of Engine Emissions From HCCI Engine, An Overview." International Journal of Mechanical and Production Engineering Research and Development 7, no. 6 (2017): 501-506.
  3. Kim, Kibum, Hyungmin Kim, and Kihyung Lee. "Novel strategies and optimization techniques to reduce harmful diesel engine emissions." Environmental Engineering Science 29, no. 5 (2012): 335-342.
  4. Kihara, Nobutaka, Tokihiro Tsukamoto, Koichi Matsumoto, Kozo Ishida, Masao Kon, and Takao Murase. Real-time on-board measurement of mass emission of NOx, fuel consumption, road load, and engine output for diesel vehicles. No. 2000-01-1141. SAE Technical Paper, 2000.
  5. Weiser K., Ennemoser A. 3D-CFD Simulation of combustion and heat transfer in high-speed diesels. Valencia, Spain. THISEL Conference, 2002. Weiser K., Ennemoser A. 3D-CFD Моделирование сгорания и теплообмена в быстроходном дизеле. Valencia, Spain. THISEL Conference, 2002.
  6. Laget, O., A. Kleemann, Stephane Jay, Benjamin Reveille, and S. Henriot. Gasoline engine development using CFD. No. 2005-01-3814. SAE Technical Paper, 2005.
  7. Kuleshov, A. S. Multi-zone DI diesel spray combustion model and its application for matching the injector design with piston bowl shape. No. 2007-01-1908. SAE Technical Paper, 2007.
  8. A.S. Kuleshov. Multi-Zone DI Diesel Spray Combustion Model for Thermodynamic Simulation of Engine with PCCI and High EGR Level, SAE Paper No 2009-01-1956, 2009.
  9. Malastowski N. S., Barchenko F. B., Grekhov L. V., Kuleshov A. S. Shaping of Injection Rate for Reducing Emission Level of High-Speed Engine. International Journal of Applied Engineering Research, 2016, vol. 11, Number 23 (2016), pp. 11189-11198.
  10. Malastovskij N. S., Barchenko F. B., Grehov L. V., Kuleshov A. S., Denisov A. A., Starkov E. E. Formation of requirements for the characteristics of the injection of a high-speed diesel in order to reduce toxicity. Engineering Journal: Science and Innovation, 2017, vol. 3. URL: http://dx.doi.o (date of the application 15 April 2017) DOI: rg/10.18698/2308-6033-2017-3-1594. Маластовский Н. С., Барченко Ф. Б., Грехов Л. В., Кулешов А. С., Денисов А. А., Старков Е. Е. Формирование требований к характеристике впрыскивания высокооборотного дизеля в целях снижения токсичности. Инженерный журнал: наука и инновации, 2017, вып. 3. URL: http://dx.doi.o (дата обращения 15 апреля 2017) DOI: rg/10.18698/2308-6033-2017-3-1594.
  11. Kavtaradze R. Z. Theory of piston engines. Special chapters. Moscow, Bauman Press, 2008, 720p. Кавтарадзе Р. З. Теория поршневых двигателей. Специальные главы. Москва, Изд-во МГТУ им. Н. Э. Баумана, 2008, 720с.
  12. Kuleshov A. S. Development of calculation methods and optimization of workflows of the internal combustion engine. Moscow, 2011, p18- 26. Кулешов А. С. Развитие методов расчета и оптимизация рабочих процессов ДВС. Москва, 2011, с18-26.
  13. Ghojel, J I. ―Review of the Development and Applications of the Wiebe Function: A Tribute to the Contribution of Ivan Wiebe to Engine Research.‖ International Journal of Engine Research 11, no. 4 (August 2010): 297–312. doi:10.1243/14680874JER06510.
  14. Heywood J. B., Internal combustion engine fundamentals. New York, 1988. p.930
  15. Ebrahimi R. Effect of specific heat ratio on heat release analysis in a spark ignition engine. Shahrekord Universiry, Iran, 2011.
  16. Akulich I. L. Mathematical programming in examples and problems. Moscow, 1986. Акулич И. Л. Математическое программирование в примерах и задачах. Москва, 1986.
  17. Moore, A.W., Hill, D.J., and Johnson, M.P. An empirical investigation of brute force to choose features, smoothers and function approximators. In Hanson, S., Judd, S., and Petsche, T., editors, Computational Learning Theory and Natural Learning Systems, Volume 9. MIT Press, 1992.
  18. Gill F., Mjurrej U., Rajt M. Practical optimization. Moscow, 1985. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Москва, 1985.
  19. Korn G., Korn T. Math Handbook for Scientists and Engineers. Moscow, 1970. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров. Москва, 1970.
  20. Hasdorff, Lawrence. "Gradient optimization and nonlinear control." (1976).b

Article full text

Download PDF