Comparison of three methods for the pump energy analysis

  • 1 Faculty of Engineering, University of Rijeka, Croatia


This paper presents a comparison of three methods for any pump energy analysis. Each method is used for the analysis of three different water pumps from the conventional steam thermal power plant – two feed water pumps (FWP1 and FWP2) and condensate pump (CP). For each pump three essential types of mechanical power which defines all energy analysis methods are: delivered power from power producer, real (polytropic) power and ideal (isentropic) power. Method 1 which compares delivered and real (polytropic) power show the best performances, while Method 3 which compare delivered and ideal (isentropic) power should be avoided because it results with too high energy power loss and too low energy efficiency of any pump. Method 2 which compares real (polytropic) and ideal (isentropic) pump power can be used as a good compromise for the pump energy analysis in the most of the cases – its results are similar to results of Method 1.



  1. Ahmadi, G. R., Toghraie, D.: Energy and exergy analysis of Montazeri steam power plant in Iran, Renewable and Sustainable Energy Reviews 56, p. 454–463, 2016. (doi:10.1016/j.rser.2015.11.074)
  2. Mrzljak, V., Poljak, I.: Energy analysis of main propulsion steam turbine from conventional LNG carrier at three different loads, International Journal of Maritime Science & Technology "Our Sea" 66 (1), p. 10-18, 2019. (doi:10.17818/NM/2019/1.2)
  3. Naserbegi, A., Aghaie, M., Minuchehr, A., Alahyarizadeh, Gh.: A novel exergy optimization of Bushehr nuclear power plant by gravitational search algorithm (GSA), Energy 148, p. 373-385, 2018. (doi:10.1016/
  4. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Genetic algorithm approach to design of multi-layer perceptron for combined cycle power plant electrical power output estimation, Energies 12 (22), 4352, 2019. (doi:10.3390/en12224352)
  5. Adibhatla, S., Kaushik, S. C.: Energy, exergy and economic (3E) analysis of integrated solar direct steam generation combined cycle power plant, Sustainable Energy Technologies and Assessments 20, p. 88–97, 2017. (doi:10.1016/j.seta.2017.01.002)
  6. Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Gorner, K., Bazzo, E.: Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant, Energy 117, Part 2, p. 416-428, 2016. doi:10.1016/
  7. Catrini, P., Cipollina, A., Micale, G., Piacentino, A., Tamburini, A.: Exergy analysis and thermoeconomic cost accounting of a combined heat and power steam cycle integrated with a multi effect distillation-thermal vapour compression desalination plant, Energy Conversion and Management 149, p. 950-965, 2017. (doi:10.1016/j.enconman.2017.04.032)
  8. Hafdhi, F., Khir, T., Ben Yahyia, A., Ben Brahim, A.: Energetic and exergetic analysis of a steam turbine power plant in an existing phosphoric acid factory, Energy Conversion and Management 106, p. 1230–1241, 2015. (doi:10.1016/j.enconman.2015.10.044)
  9. Sutton, I.: Plant design and operations, Elsevier Inc., 2015.
  10. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Multilayer Perceptron approach to Condition-Based Maintenance of Marine CODLAG Propulsion System Components, Scientific Journal of Maritime Research 33 (2), p. 181- 190, 2019. (doi:10.31217/p.33.2.8)
  11. Koroglu, T., Sogut, O.S.: Conventional and advanced exergy analyses of a marine steam power plant, Energy 163, p. 392-403, 2018. (doi:10.1016/
  12. Mrzljak, V., Anđelić, N., Lorencin, I., Car, Z.: Analysis of gas turbine operation before and after major maintenance, Journal of Maritime & Transportation Sciences 57 (1), p. 57-70, 2019. (doi:10.18048/2019.57.04)
  13. Mrzljak, V., Prpić-Oršić, J., Poljak, I.: Energy power losses and efficiency of low power steam turbine for the main feed water pump drive in the marine steam propulsion system, Journal of Maritime & Transportation Sciences 54 (1), p. 37-51, 2018. (doi:10.18048/2018.54.03)
  14. Moran M., Shapiro H., Boettner, D. D., Bailey, M. B.: Fundamentals of engineering thermodynamics, 7th edition, John Wiley and Sons, Inc., 2011.
  15. Kostyuk, A., Frolov, V.: Steam and gas turbines, Mir Publishers, Moscow, 1988.
  16. Mrzljak, V., Poljak, I., Mrakovčić, T.: Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier, Energy Conversion and Management 140, p. 307–323, 2017. (doi:10.1016/j.enconman.2017.03.007)
  17. Mrzljak, V.: Low power steam turbine energy efficiency and losses during the developed power variation, Technical Journal 12 (3), p. 174-180, 2018. (doi:10.31803/tg-20180201002943)
  18. Kanoğlu, M., Çengel, Y.A., Dincer, I.: Efficiency evaluation of energy systems, Springer Briefs in Energy, Springer, 2012.
  19. Kocijel, L., Poljak, I., Mrzljak, V., Car, Z.: Energy Loss Analysis at the Gland Seals of a Marine Turbo-Generator Steam Turbine, Technical Journal 14 (1), p. 19-26, 2020. (doi:10.31803/tg-20191031094436)
  20. Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., Štifanić, D.: Comparison of conventional and heat balance based energy analyses of steam turbine, Scientific Journal of Maritime Research 34 (1), p. 74-85, 2020. (doi:10.31217/p.34.1.9)
  21. Medica-Viola, V., Mrzljak, V., Anđelić, N., Jelić, M.: Analysis of Low- Power Steam Turbine With One Extraction for Marine Applications, International Journal of Maritime Science & Technology "Our Sea" 67 (2), p. 87-95, 2020. (doi:10.17818/NM/2020/2.1)
  22. Mrzljak, V., Blecich, P., Anđelić, N., Lorencin, I.: Energy and exergy analyses of forced draft fan for marine steam propulsion system during load change, Journal of Marine Science and Engineering 7 (11), 381, 2019. (doi:10.3390/jmse7110381)
  23. Taheri, M. H., Mosaffa, A. H., Garousi Farshi, L.: Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle, Energy 125, p. 162-177, 2017. (doi:10.1016/
  24. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Exergy analysis of marine steam turbine labyrinth (gland) seals, Scientific Journal of Maritime Research 33 (1), p. 76-83, 2019. (doi:10.31217/p.33.1.8)
  25. Noroozian, A., Mohammadi, A., Bidi, M., Ahmadi, M. H.: Energy, exergy and economic analyses of a novel system to recover waste heat and water in steam power plants, Energy Conversion and Management 144, p. 351–360, 2017. (doi:10.1016/j.enconman.2017.04.067)
  26. Mrzljak, V., Ţarković, B., Poljak, I.: Energy and exergy analysis of sea water pump for the main condenser cooling in the LNG carrier steam propulsion system, Proceedings of International scientific conference Mathematical Modeling 2017, p. 92-95, Borovets, Bulgaria, 2017.
  27. Uysal, C., Kurt, H., Kwak H.-Y.: Exergetic and thermoeconomic analyses of a coal-fired power plant, International Journal of Thermal Sciences 117, p. 106-120, 2017. (doi:10.1016/j.ijthermalsci.2017.03.010)
  28. Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST reference fluid thermodynamic and transport properties - REFPROP, version 9.0, User’s guide, Colorado, 2010.
  29. Lorencin, I., Anđelić, N., Mrzljak, V., Car, Z.: Marine objects recognition using convolutional neural networks, International Journal of Maritime Science & Technology “Our Sea” 66 (3), p. 112-119, 2019. (doi:10.17818/NM/2019/3.3)
  30. Car, Z., Baressi Šegota, S., Anđelić, N., Lorencin, I., Mrzljak, V.: Modeling the Spread of COVID-19 Infection Using a Multilayer Perceptron, Computational and Mathematical Methods in Medicine, 2020. (doi:10.1155/2020/5714714)
  31. Lorencin, I., Anđelić, N., Španjol, J., Car, Z.: Using multi-layer perceptron with Laplacian edge detector for bladder cancer diagnosis, Artificial Intelligence in Medicine, 102, 101746, 2020. (doi:10.1016/j.artmed.2019.101746)
  32. Baressi Šegota, S., Lorencin, I., Ohkura, K., Car, Z.: On the traveling salesman problem in nautical environments: an evolutionary computing approach to optimization of tourist route paths in Medulin, Croatia, Journal of Maritime & Transportation Sciences 57 (1), p. 71-87, 2019. (doi:10.18048/2019.57.05)

Article full text

Download PDF