THEORETICAL FOUNDATIONS AND SPECIFICITY OF MATHEMATICAL MODELLING

Peculiarities of the correlation properties of generating functions for Walsh derivative functions used in the formation of noise-like signals

  • 1 Technical University Chisinau, Republic of Moldova

Abstract

The article presents the results of researches that are a continuation of analyzes of the correlation properties of generating functions intended for the formation of derivatives of Walsh functions. The derivatives of the Walsh functions are designed to obtain pseudorandom sequences (PRS) used in the formation of noise-like signals in multichannel data transmission systems with channel division according to the shape (code) of the signal. The analysis performed showed that the correlation properties of the derivatives of the Walsh functions depend on the type of generating functions, which were the modified Barker codes – direct and inverse composite Barker codes and de Bruijn sequences. It was justified the advantage of using these signals in the development of CDMA systems in order to reduce the interference level of multiple access and to protect against unauthorized access.

Keywords

References

  1. Л.Е. Варакин, Системы связи с шумоподобными сигналами. (М.: Радио и связь, 1985).
  2. М.И. Мазурков, Системы широкополосной радиосвязи. (О.: Наука и техника, 2009).
  3. В.Е. Гантмахер, Н.Е. Быстров, Д.В. Чеботарев, Шумоподобные сигналы. Анализ, синтез, обработка (СПб.: Наука и Техника, 2005).
  4. W. Solomon, Golomb and Guang, Gong. Signal Design for Good Correlation. Cambridge University Press (2005).
  5. T. Sestacova, Gh. Sorochin, V. Jdanov, Analysis of the correlation properties of direct and inverse composite Walsh functions. ISJ Math.Modeling, “Industry 4.0”, issue 1, p. 3 (2021), Sofia, Bulgaria.
  6. Volynskaya A.V., Kalinin P. M. New noise-resistant signals for an intelligent telemechanic channel. - 2012. - №.11-4. - pp. 922- 926.
  7. Г.И. Никитин, Применение функций Уолша в сотовых системах связи с кодовым разделением каналов (СПб.: СПбГУАП, 2003).
  8. М.С. Беспалов., В.А. Скляренко, Функции Уолша и их приложения. Уч. пособие. (Владимир, Изд-во ВлГУ, 2012).
  9. Sorochin G. F., Sestacova T. V. Comparative analysis of composite Barker codes and composite Walsh functions. - Innsbruck,Austria//Österreichisches Multiscience Journal №38/2021, pp. 72-78.

Article full text

Download PDF