60 MW steam turbine conventional and segmental isentropic analyses comparison

  • 1 Faculty of Engineering, University of Rijeka, Croatia


This paper presents results of two different isentropic analysis types: conventional isentropic analysis which considers the whole steam turbine cylinder and segmental isentropic analysis which considers all cylinder parts (segments). In conventional isentropic analysis is obtained that isentropic efficiency of the analyzed turbine is 73.39%, what is in a range of expected isentropic efficiencies for such steam turbines (in the mechanical power range around 60 MW). Segmental isentropic analysis shows that the last two segments (fifth and sixth segment) of the analyzed turbine did not show proper operation (especially the fifth turbine segment which isentropic efficiency is unacceptably low and equal to 26.73% only). Such isentropic efficiency results, related to the fifth and sixth turbine segment, indicate highly problematic operation, or the most likely malfunction of at least some turbine stages in these segments. For the analyzed steam turbine can be recommended that it should be stopped as soon as possible and that turbine stages mounted in the last two segments should be checked, repaired or replaced.



  1. Elhelw, M., & Al Dahma, K. S. (2019). Utilizing exergy analysis in studying the performance of steam power plant at two different operation mode. Applied Thermal Engineering, 150, 285-293. (doi:10.1016/j.applthermaleng.2019.01.003)
  2. Tanuma, T. (Ed.). (2022). Advances in steam turbines for modern power plants. Woodhead Publishing.
  3. Koroglu, T., & Sogut, O. S. (2018). Conventional and advanced exergy analyses of a marine steam power plant. Energy, 163, 392-403. (doi:10.1016/
  4. Poljak, I., & Mrzljak, V. (2023). Thermodynamic Analysis and Comparison of Two Marine Steam Propulsion Turbines. NAŠE MORE: znanstveni časopis za more i pomorstvo, 70(2), 0-0. (doi:10.17818/NM/2023/2.2)
  5. Burin, E. K., Vogel, T., Multhaupt, S., Thelen, A., Oeljeklaus, G., Görner, K., & Bazzo, E. (2016). Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant. Energy, 117, 416-428. (doi:10.1016/
  6. Lorencin, I., Anđelić, N., Mrzljak, V., & Car, Z. (2019). Genetic Algorithm Approach to Design of Multi-Layer Perceptron for Combined Cycle Power Plant Electrical Power Output Estimation. Energies, 12(22), 4352. (doi:10.3390/en12224352)
  7. Ahmadi, G. R., & Toghraie, D. (2016). Energy and exergy analysis of Montazeri steam power plant in Iran. Renewable and Sustainable Energy Reviews, 56, 454-463. (doi:10.1016/j.rser.2015.11.074)
  8. Mrzljak, V., Jelić, M., Poljak, I., & Prpić-Oršić, J. (2023). Analysis and Comparison of Main Steam Turbines from Four Different Thermal Power Plants. Pomorstvo, 37(1), 58-74. (doi:10.31217/p.37.1.6)
  9. Behrendt, C., & Stoyanov, R. (2018). Operational Characteristic of Selected Marine Turbounits Powered by Steam from Auxiliary Oil-Fired Boilers. New Trends in Production Engineering, 1(1), 495-501. (doi:10.2478/ntpe-2018-0061)
  10. Mrzljak, V., Senčić, T., & Žarković, B. (2018). Turbogenerator steam turbine variation in developed power: Analysis of exergy efficiency and exergy destruction change. Modelling and Simulation in Engineering, 2018. (doi:10.1155/2018/2945325)
  11. Kostyuk, A., & Frolov, V. (Eds.). (1988). Steam and gas turbines. Mir Pub.
  12. Mrzljak, V., Anđelić, N., Lorencin, I., & Sandi Baressi Šegota, S. (2021). The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction. Pomorstvo, 35(1), 69-86. (doi:10.31217/p.35.1.8)
  13. Mrzljak, V., Prpić-Oršić, J., & Poljak, I. (2018). Energy power losses and efficiency of low power steam turbine for the main feed water pump drive in the marine steam propulsion system. Pomorski zbornik, 54(1), 37-51. (doi:10.18048/2018.54.03)
  14. Mrzljak, V., Poljak, I., & Medica-Viola, V. (2017). Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Applied Thermal Engineering, 119, 331-346. (doi:10.1016/j.applthermaleng.2017.03.078)
  15. Mrzljak, V., Lorencin, I., Anđelić, N., & Car, Z. (2021). Thermodynamic Analysis of a Condensate Heating System from a Marine Steam Propulsion Plant with Steam Reheating. Journal of Marine Science and Application, 20, 117-127. (doi:10.1007/s11804-021-00191-5)
  16. Jiping, L., Wei, H., Xin, W., Xiaoqu, H., Daotong, C., & Junjie, Y. (2015). Theoretical investigation on the partial load feedwater heating system with thermal vapor compressor in a coal-fired power unit. Energy Procedia, 75, 1102-1107. (doi:10.1016/j.egypro.2015.07.500)
  17. Škopac, L., Medica-Viola, V., & Mrzljak, V. (2020). Selection Maps of Explicit Colebrook Approximations according to Calculation Time and Precision. Heat Transfer Engineering, 1-15. (doi:10.1080/01457632.2020.1744248)
  18. Pattanayak, L., Padhi, B. N., & Kodamasingh, B. (2019). Thermal performance assessment of steam surface condenser. Case Studies in Thermal Engineering, 14, 100484. (doi:10.1016/j.csite.2019.100484)
  19. Mrzljak, V., Šegota, S. B., Kocijel, L., & Prpić-Oršić, J. (2020). Energy (isentropic) analysis of three-cylinder steam turbine with re-heating. Innovations, 8(1), 37-40.
  20. Hafdhi, F., Khir, T., Yahyia, A. B., & Brahim, A. B. (2015). Energetic and exergetic analysis of a steam turbine power plant in an existing phosphoric acid factory. Energy Conversion and Management, 106, 1230-1241. (doi:10.1016/j.enconman.2015.10.044)
  21. Medica-Viola, V., Baressi Šegota, S., Mrzljak, V., & Štifanić, D. (2020). Comparison of conventional and heat balance based energy analyses of steam turbine. Pomorstvo, 34(1), 74-85. (doi:10.31217/p.34.1.9)
  22. Mrzljak, V., Kudláček, J., Baressi Šegota, S., & Medica-Viola, V. (2021). Energy and Exergy Analysis of Waste Heat Recovery Closed-Cycle Gas Turbine System while Operating with Different Medium. Pomorski zbornik, 60(1), 21-48. (doi:10.18048/2021.60.02)
  23. Aljundi, I. H. (2009). Energy and exergy analysis of a steam power plant in Jordan. Applied thermal engineering, 29(2-3), 324-328. (doi:10.1016/j.applthermaleng.2008.02.029)
  24. Lemmon, E. W., Huber, M. L., & McLinden, M. O. (2010). NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0, National Institute of Standards and Technology. R1234yf. fld file dated December, 22, 2010.
  25. Mrzljak, V., Poljak, I., & Mrakovčić, T. (2017). Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier. Energy conversion and management, 140, 307-323. (doi:10.1016/j.enconman.2017.03.007)
  26. Elčić, Z. (1995). Steam turbines. ABB, Karlovac, National and University Library Zagreb.

Article full text

Download PDF