Green chemistry: carbon-bearing minerals as a source of nanocarbons

  • 1 Department of Chemistry, Warsaw University, Warsaw, Poland
  • 2 School of Science, Kathmandu University, Dhulikhel, Kavre, Nepal


Natural abundant, cheap and widely used raw materials like calcite, magnesite and dolomite contain elemental carbon up to several wt percent. Such rocks have been chemically processed here using combustion synthesis route to yield novel nanocarbons including two-dimensional graphene-like structures. The fast and efficient reduction of powdered minerals with strong reducer (Mg) produces, after chemical wet purification, carbon nanomaterial which was analyzed using different techniques like XRD and SEM. This ‘combustion’ process was followed on-line to evaluate reaction duration (usually within 1 sec).



  1. Tiwari S.K., V. Kumar, A. Huczko, R. Oraon, A. De Adhikari, G.C. Nayak (2016) Magical Allotropes of Carbon: Prospects and Applications. Critical Reviews in Solid State Materials Science 41: 257–317
  2. Kroro H.W., J. R. Heath, S. C. O'Brien, R. F. Curl & R. E. Smalley (1985) C60: Buckminsterfullerene. Nature 318: 162–163
  3. Iijima, S. (1991) Synthesis of Carbon Nanotubes. Nature 354: 56- 58
  4. Novoselov K.S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov (2004) Electric Field Effect in Atomically Thin Carbon Films. Science 306: 666-669
  5. Zhao Y., X.G. Li , X. Zhou, Y.N. Zhang (2016) Review on the Graphene Based Optical Fiber Chemical and Biological Sensors. Sensors and Actuators B: Chemical 231: 324-340
  6. Dyjak S., W. Kiciński, A. Huczko (2015) Thermite-driven Melamine Condensation to CxNyHz Graphite Ternary Polymers: Towards an Instant, Large-scale Synthesis of g-C3N4 . J. Mater. Chem. A 3: 9621-9631
  7. Manning T.J., M. Mitchell, J. Stach, T. Vickers (1999) Synthesis of Exfoliated Graphite from Fluorinated Graphite using an Atmospheric-pressure Argon Plasma. Carbon 37: 1159-1164
  8. Morsi K. (2012) The Diversity of Combustion Synthesis Processing: a Review. J. Mater. Sci. 47: 68-92
  9. Huczko, A., H. Lange, G. Chojecki, S. Cudziło, Y.Q. Zhu, H.W. Kroto, D.R.M. Walton (2003) Synthesis of Novel Nanostructures by Metal-Polytetrafluoroethene Thermolysis. J. Phys. Chem. B 107: 2519-2524
  10. Dąbrowska A., A. Huczko, M. Soszyński, B. Bendjemil, F. Micciulla, I. Sacco, L. Coderoni, S. Bellucci (2011) Ultra-fast Efficient Synthesis of One-dimensional Nanostructures. Phys. Status Solidi B 248: 2704-2707
  11. Dąbrowska A., A. Huczko, S. Dyjak (2012) Fast and Efficient Combustion Synthesis Route to Produce Novel Nanocarbons.Phys. Status Solidi B 249: 2373-2377
  12. Huczko, A., A. Dąbrowska, O. Łabędź, M. Soszyński, M. Bystrzejewski, P. Baranowski, R. Bhatta, B. Pokhrel, B.P. Kafle, S. Stelmakh, S. Gierlotka, S. Dyjak (2014) Facile and Fast Combustion Synthesis and Characterization of Novel Carbon Nanostructures. Physica Status Solidi B 251: 2563-2568
  13. Huczko A., O. Łabędź, A. Dąbrowska, M. Kurcz, M. Bystrzejewski, H. Lange, P. Baranowski, L. Stobiński, A. Małolepszy, A. Okotrub, M. Soszyński (2015) Efficient One-pot Combustion Synthesis of Few-layered Graphene. Physica Status Solidi B 252: 2412-2417
  14. Dyjak S., W. Kiciński, M. Norek, A. Huczko, O. Łabędź, B. Budner, M. Polański (2016) Hierarchical, Nanoporous Graphenic Carbon Materials Through an Instant, Self-sustaining Magnesiothermic Reduction. Carbon 96: 937-946

Article full text

Download PDF