Fundamental properties of crystalline nano-structures caused by mechanical and thermodynamical excitations

  • 1 University of Novi Sad, Faculty of Medicine, Novi Sad, Vojvodina – Serbia
  • 2 University of Banja Luka, Faculty of Sciences, Banja Luka, Republic of Srpska, B&H
  • 3 University of Niš, Faculty of Sciences, Niš, Serbia
  • 4 Academy of Sciences and Arts of the Republic of Srpska, Banja Luka, Republic of Srpska, B&H
  • 5 University “Union – Nikola Tesla”, Faculty of Sport, New Belgrade, Vojvodina – Serbia


Mechanical or thermodynamic excitations in solid state physics – phonons, cause all fundamental physical properties of materials and always are present, regardless of what is the main carrier of transport properties and ordering (for example, in electroconductivity, it can be electrons / holes, ions, etc., and in magnetism – magnons). In particular, phonons play a different and more subtle role in low-dimensional nano-scale samples, because they, due to the confinement effects, influence the creation of completely unusual and altered characteristics in relation to large (bulk) samples of exactly the same material. Therefore, the possible phonon spectra and states in model of crystal nanostructures: ultrathin films, nano-wires and quantum dots were founded in the paper. The most noticeable phenomenon is the consequence of the dimensional quantization, but also the shape of the boundary surfaces, as well as the presence of the environment surrounding the nano-pattern. In addition to the analysis of the microscopic properties of the phonon subsystem, the calculation of the temperature dependence of the thermal capacity and entropy of these nano systems was also calculated and performed by comparisons with the same for bulk structure.



  1. G.Cao, Nanostructures & Nanomaterials, Synthesis, Properties & Applications, Imperial College Press, London 2004.
  2. C.Delerue, M.Lannoo, Nanostructures -- Theory and Modelling, Springer, Berlin 2009.
  3. H.E.Schaefer, Nanoscience – The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine, Springer, Berlin 2010.
  4. V.D.Sajfert, B.S.Tošić, The Research of Nanoscience Progress, J.Comput.Theor.Nanosci. 7/1, 15–84 (2010).
  5. J.Jeevanandam, A.Barhoum, Y.S.Chan, A.Dufresne, M.K.Danquah: Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations, Beilstein J. Nanotechnol. 9, 1050–1074 (2018); doi: 10.3762/bjnano.9.98.
  6. A.J.Šetrajčić-Tomić, J.K.Popović, M.Vojnović, Lj.D.Džambas, J.P.Šetrajčić, Review of Core-Multishell Nanostructured Models for Nano-Biomedical and NanoBiopharmaceutical Application, Bio-Med.Mater.Eng. 29/4, 451-471 (2018); doi: 10.3233/BME-181002.
  7. C.Kittel, Quantum Theory of Solids, Wiley, New York 1963.
  8. J.M.Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford Press, New York 2001.
  9. G.D.Mahan, Condensed Matter in a Nutshell, University Press, Princeton 2011.
  10. M.A.Stroscio, M.Dutta, Phonons in Nanostructures, ISBN 0- 521-79279-7; University Press, Cambridge 2004.
  11. A.A.Balandin, D.L.Nika, Phononics in Low-Dimensionals Materials, Materials Today 15/6, 266 (2012).
  12. J.P.Šetrajčić, S.K.Jaćimovski, V.D.Sajfert, Phonon Contribution to Heat Capacitance of Nanolayered Crystalline Structures, Mod.Phys.Lett.B 29/4, 1550008 (2015); doi: 10.1142/S0217984915500086.
  13. J.P.Šetrajčić, V.D.Sajfert, S.K.Jaćimovski, Fundamental Preferences of the Phonon Engineering for Nanostructural Samples, Rev.Theor.Sci. 4/4, 353-401 (2016); doi: 10.1166/rits.2016.1067.
  14. J.P.Šetrajčić, S.K.Jaćimovski, S.M.Vučenović, Diffusion of Phonons through (along and across) the Ultrathin Crystalline Films, Physica A 486, 839-848 (2017), doi: 10.1016/j.physa.2017.06.003.
  15. J.P.Šetrajčić, D.I.Ilić, S.K.Jaćimovski, The Influence of the Surface Parameter Changes onto the Phonon States in Ultrathin Crystalline Films, Physica A 496, 434-445 (2018), doi: 10.1016/j.physa.2017.12.138 .
  16. J.P.Šetrajčić, Adequate Determination of Micro and Macro Properties of Optical Nano-Crystals, Opto-Electron.Rev. 25/4, 303–310 (2017). doi: 10.1016/j.opelre.2017.08.003.
  17. J.P.Šetrajčić, S.K.Jaćimovski, Different Regions of Exciton Localized States in Ultrathin Dielectric Films, J.Phys.Chem.Sol. 105, 1–8 (2017). doi: 10.1016/j.jpcs.2017.02.001.
  18. D.I.Ilić, J.P.Šetrajčić, S.K.Jaćimovski, Phonon-Induced Thermodynamic Properties of Ultra-Narrow Wires, Acta Phys.Pol.A 133/1, 57-62 (2018); doi: 10.12693/APhysPolA.133.57.
  19. J.P.Šetrajčić, V.M.Zorić, N.V.Delić, D.Lj.Mirjanić, S.K.Jaćimovski, Phonon Participation in Thermodynamics and Superconductive Properties of Thin Ceramic Films, Ch. 15, pp. 317-348, In „Thermodynamics”, Ed. M.Tadashi, ISBN: 978-953-307-544-0, InTech, Vienna (Austria) 2011.
  20. P.W.Anderson, Twenty-five Years of High-Temperature Superconductivity – A Personal Review, J.Physics: Conf.Ser. 449, 012001 (2013); doi: 10.1088/1742- 6596/449/1/012001/pdf.

Article full text

Download PDF