Combustion synthesis: Towards novel nanomaterials

  • 1 Department of Chemistry, Warsaw University, Warsaw, Poland
  • 2 Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz
  • 3 RSE ‘National Center on Complex Processing of Mineral Raw Materials of the Republic of Kazakhstan’, Almaty, Kazakhstan
  • 4 Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, China
  • 5 Department of Physics, School of Science, Kathmandu University, Dhulikhel, Kavre, Nepal


The combustion synthesis (CS) is an autogenous and strongly exothermic chemical reaction in a powdered mixture of a strong reducer and oxidizer. Such processes, due to short duration and fast quench, can be a source of novel nanomaterials. Here we present (i) the CS synthesis of SiC nanowires (SiCNWs) and (ii) the magnesiothermic reduction of the asbestos waste. The resulting raw and purified products were analyzed with different chemical and physicochemical techniques (XRD, SEM, TGA and Raman spectroscopy) to verify its composition and morphology.



  1. J. J. Moore, H.J. Feng, Progr. Mat. Sci., 39, 275 (1995)
  2. A. Huczko, M. Szala, A. Dąbrowska, Synteza Spaleniowa Materiałów Nanostrukturalnych (Warsaw University Publishing House, in Polish, 2011)
  3. A. Huczko, H. Lange, G. Chojecki, S. Cudziło, Y.Q. Zhu, H.W. Kroto, D.R.M. Walton, J. Phys. Chem. B, 10, 2519 (2003)
  4. A. Dąbrowska, A. Huczko, Phys. Status Solidi B, 255, 1800194 (2018)
  5. Patent DE102015221226A1 (2015)
  6. Patent WO 147958 A2 (2013)
  7. S.K. Tiwari, S. Sahoo, N. Wang, A. Huczko, J. of Sci.: Adv. Mat. Dev., in press (2020)
  8. K. Manjunath, T.N. Ravishankar, D. Kumar, K.P. Priyanka, T. Varghese, H.R. Naika, H. Nagabhushana, S.C. Sharma, J. Dupont, T. Ramakrishnappa, C. Nagarju, Mat. Res. Bull., 57, 325 (2014)
  9. 8. A.R. Ramos, A.K.G. Tapia, C.M.N. Pinol, N.B. Lantican, M.I. del Mundo, R.D. Manalo, M.U. Herrera, J. of Sci.: Adv. Mat. Dev., 4, 66 (2019)
  10. A. Huczko, M. Kurcz, P. Baranowski, M. Bystrzejewski, A. Bhattarai, S. Dyjak, R. Bhatta, B. Pokhrel, B.P. Kafle, Phys. Status Solidi B, 250, 2702 (2013)
  11. A. Huczko, A. Dąbrowska, M. Fronczak, M. Bystrzejewski, D.P. Subedi, B.P. Kafle, R. Bhatta, P. Subedi, A. Poudel, Int. J. Self-Prop. High-Temp. Synth., 27, 72 (2018)
  12. M. Soszyński, O. Łabędź, A. Huczko, J. Crystal Growth, 401, 445 ( 2014)
  13. A. Shayakhmetova, A.A. Mukhametzhanova, I.B. Samatov, D.N., Machines, Technologies, Materials, 13, 90 (2019)
  14. B. Ma, Z. Huang, M. Fang, Y. Liu, S. Chen, Key Eng. Mat., 544, 29 (2013)
  15. G. Qi, L. Fu, E.P. Giannelis, Nature Comm., 5, 5796 (2014)
  16. C.H. Giles, T.H. McEwan, S.N. Nakhwa, D. Smith, J. Chem. Soc., 786, 3973 (1960)
  17. K.S.W. Sing, Pure Appl. Chem., 54, 2201 (1982)

Article full text

Download PDF