Layered heat resistant (Nb–V) composites with intermetallic hardening, obtained by diffusion welding

  • 1 Institute of Solid State Physics RAS, Russia


The microstructure and characteristics of the heat resistance of layered composites of Nb–V alloys and intermetallic compounds with aluminum are presented. The composites obtained by diffusion welding under pressure of packages of aluminum foils and foils of niobium alloys with 5, 10, and 15 at. % vanadium had structures representing an alternation of viscous-plastic layers and reinforcing layers of aluminides. The composites were characterized by a viscous-plastic nature of fracture and higher values of strength at room temperature and temperatures up to 1300°C, in comparison with composites without vanadium.



  1. Torus Press. V.A. Skibin. М.: 2006, 459 с.
  2. Высокотемпературные газовые турбины. Под ред. М.Я. Иванова. М.: ТОРУС ПРЕСС, 2010, 304 с.
  3. Ospennikova O.G. Development strategies of high-temperature alloys and special steels, protective and thermoprotective coatings. Aviat. Mater. Techn., 2012, No 5, pp. 19–36.
  4. Светлов И.Л. Высокотемпературные Nb–Si-композиты. Материаловедение, 2010, №9, с. 29–38.
  5. Svetlov I.L., Karpov M.I., Neyman A.V., Stroganova T.S. Temperature dependence of the ultimate strength of in-situ Multicomponent Nb–Si–X (X = Ti, Hf, W, Cr, Al, Mo) composites. Russian Metallurgy (Metally), 2018, No 4, pp. 348– 353.
  6. Zhao J.-C., Westbrook J.H. Ultrahigh-Temperature Mate-rials for Jet Engines. MRS Bulletin, September, 2003, pp. 622– 630.
  7. Bewlay B.P., Jackson M.R., Zhao J.C. et al. A Review of Very-High-Temperature Nb-Silicide–Based Com-posites. Metallurgical and Materials Transactions A, 2003, vol. 34, pp. 2043–2052.
  8. Guan D. L., Brooks C. R., Liaw P. K. Microstructure and Mechanical properties of as-cast and aged Nb–15 at. %Al–10 at. %Ti, –25 at. %Ti and –40 at. %Ti alloys. Intermetallic, 2002, vol. 10, No 5, pp. 441–458.
  9. Jéhanno P. et al. Superplasticity of a multiphase refractory Mo–Si–B alloy. Scripta Materialia, 2006, vol. 55, No 6, pp. 525–528.
  10. Li Z.K. et al. Superplasticity of a multiphase fine grained Mo–Si–B alloy. Powder technology, 2011, vol. 214, No 1, pp. 54–56.
  11. Cao H., Löfvander J.P., Evans A.G. et al. Mechanical properties of an in situ synthesized Nb/Nb3A1 layered comcomposite. Mechanical Materials Science and Engineering, 1994, vol. 185, No 1–2, pp. 87–95.
  12. Rowe R.G., Skelly D.W. The synthesis and evaluation of Nb–A1/Nb laminated composites. Mater. Res. Soc. Symp. Proc., 1992, vol. 273, pp. 411–417.
  13. Ucadamo G., Barmak K., Hyun S. et al. Evidence of a twostage reaction mechanism in sputter deposited Nb–Al multilayer thin films studied by in situ synchrotron X-ray diffraction. Materials Letters, 1999, vol. 42, No 6, pp. 268–273.
  14. Wu X., Holmes J.W., Ghosh A.K. Creep and fracture in model niobium-alumina laminates under shear.Acta Metallurgica et Materialia, 1994, vol. 42, No 6, pp. 2069–2081.
  15. Коржов В.П., Кийко В.М. Структура и механические свойства слоистых композитов Ni/Al с упрочнением интерметаллидами. Деформация и Разрушение Материалов, 2015, №6, с. 6–11.
  16. Коржов, В.П., Карпов М.И., Прохоров Д.В. Многослойная структура и высокотемпературная прочность жаропрочных материалов на основе соединений ниобия с алюминием и кремнием, полученных из из композитов N–Al и Nb-Si. Физика и Техника Высоких Давлений, 2013, т. 23, № 1, с. 99–107.
  17. Pouchou J.L., Pichoir F. A new model for quantitateve X-ray microanalysis. I. Application to the analysis of homogeneous samples. Recherche Aerospatiale, 1984, vol. 3, pp. 13–38.
  18. Основы механики разрушения. Д. Броек. М.: Высшая школа, 1980, 368 с.
  19. Karpov M. I. Niobium-base refractory alloys with silicide and carbide hardening current status and prospects. Metal Science and Heat Treatment, 2018, vol. 60, Iss.1–2, pp. 7–12.

Article full text

Download PDF