Technological first-order phase transition base of foundry and material science

  • 1 Institute of Metal Science, Equipment and Technologies with Hydro- and Aerodynamics Centre „Acad. Angel Balevski“ Bulgarian Academy of Science, Sofia, Bulgaria

Abstract

Technological first-order phase transition is obtain base process of material science by numerical experiments at use of finite elements method (FEM). The history of movement and the geometry of the front in the first-order phase transition are investigated. A free first-order phase transition was investigated to estimate the local place of the liquid residue. Mathematical model is Stefan-Schwartz task in 3D case. The corresponding temperature fields of a free and technological first-order phase transition are presented. Engineering information is local phase transition conditions is shown of macro-level with the local transition time and volume at the front is assumed.

Keywords

References

  1. J. Stefan. ¨ Uber die verdampfung und die aufl¨osung als vorgūange der diffusion. Annalen der Physik und Chemie, 277(12):725–747, 1890.
  2. C. Schwarz, Arch. Für Eisenhüttwesen, H. 3, p. 139- 148, Sept. 1931.
  3. A. Balevski, Metal science, Technics, Sofia, (1962) (In Bulgarian)
  4. M. Borisov, K. Marinova, Introduction to Solid State Physics 1, Science and art, Sofia, 1977. (In Bulgarian)
  5. M. Flemings, Solidification processing, Peace, Moscow, 1977. (In Russian)
  6. Enrico Fermi, Thermodynamics, Prentice-Hall, New York, 1937, second stereotype edition, Publishing House of Kharkov University, 1973. (In Russian)
  7. S. M. Bushev, Thesis of PhD Controllability problems of crystallization process in casting, Technical University – Sofia, 1993.
  8. S. Vodenicharov, Dynamic destruction of metal structures, Bulged Ltd. ISBN 978-954-92552-3-2
  9. A. S. Maneva, Thesis of PhD Investigation of the structure and properties of castings of under eutectic aluminum alloys as a function of the ratio of primary and secondary alloys, Technical University – Sofia, 1993. (In Bulgarian)
  10. Ts. Uzunov, Physics of metals, Technical University, Sofia, 2004.
  11. I. M. Parshorov, Thesis of Dr.Sc. Processes and conditions associated with dynamic relaxation in alloy martensite, Technical University, Sofia, 2001.
  12. Y. Arsov, E. Momchilov, K. Daskalov, G. Bachvarov, Theoretical and technological fundamentals of gas counter-pressure casting, “Prof. M. Drina” Acad. Pub. House, Sofia, 2007.
  13. G. Schulze, Metallphysik, Peace, Moscow, 1971. (In Russian)
  14. J. Blakemore, Solid state physics, Metallurgy, 1972. (In Russian)
  15. Ch. Wert, R. Thomson, Physics of solids, Peace, Moscow, 1960. (In Russian)
  16. W. D. Callister, Jr. D. G. Rethwisch, Fundamentals of materials science and engineering an integrated approach 3 Ed., John Wiley & Sons, Inc. 2008.
  17. W. D. Callister, Jr. D. G. Rethwisch, Material science and engineering 9 Ed., John Wiley & Sons, Inc. 2014.
  18. J. Campbell, Complete Casting Handbook, Butterworth- Heinemann, 2011.
  19. Georgiev G., Velikov A., Stanev S. Maneva A., Thermal processes for the formation of aluminum casting by the method "GP", XXII International Scientific Technical Conference „FOUNDRY 2015“, 16.-17.04.2015, Pleven, Bulgaria. ISSN: 1310- 3946 (In Bulgarian)
  20. S. Bushev, N. Miloshev, G. Batchvarov, L. Stanev, M. Dimitrov, N. Stoichev. Analysis of a Real casting Solidification Under Different Cooling Conditions. Proceedings of the 12th International Metallurgy & Material Congress and Fair, 28.09.- 01.10.2005, Istanbul, Turkey, 2007-2014.
  21. A. Maneva, S. Stanev, S. Bushev, M. Georgiev, Low pressure casting micro-foundry – investigation of the care wheels, International Journal „NDT Days“, vol. I, Issue 1, Year 2018. ISSN: 2603-4018
  22. www.castep.org

Article full text

Download PDF