Deposition of cobalt alloy protective coating on titanium against negative effects of hydrogen environment

  • 1 G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine; E.O. Paton Electric Welding Institute, NAS of Ukraine
  • 2 G.V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine
  • 3 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine

Abstract

The protective coating on a cubic-shaped titanium sample was deposited by the plasma method in an argon atmosphere in several stages, in order to form a continuous barrier on all surfaces of the sample. It was shown that, when the protective coating was deposited by the specified method, partial or complete melting of the powders occurred, and subsequently, when they were deposited on the surface of the substrate, active interaction occurred. This made it possible to form a sufficiently continuous layer on the surface of titanium due to mutual diffusion. It is found out that the deposited protective coating allows titanium to be heated up to 400 ± 10 °C in a hydrogen atmosphere (hydrogen pressure 0.6 ± 0.2 MPa) without interaction with the gas.

Keywords

References

  1. I.M. Robertson, P. Sofronis, A. Nagao, et al. Hydrogen Embrittlement Understood. Metall Mater Trans A, 46: 2323–2341 (2015). https://doi.org/10.1007/s11661-015-2836-1
  2. О.М. Ivasyshyn, D.H. Savvakin, V.А. Dekhtyarenko, et al. Interaction of Ті–Al–V–Fe, Al–V–Fe, and Ті–Al–Mo–Fe Powder Master Alloys with Hydrogen. Mater Sci 54, 266–272 (2018). https://doi.org/10.1007/s11003-018-0182-3
  3. V. Madina, I. Azkarate, Compatibility of materials with hydrogen. Particular case: Hydrogen embrittlement of titanium alloys. Int. J Нydrogen energy, 34: 5976–5980 (2009) https://doi.org/10.1016/j.ijhydene.2009.01.058
  4. V.A. Dekhtyarenko, T.V. Pryadko, О.І. Boshko, V.V. Kirilchuk, H.Yu. Mykhailova, and V.I. Bondarchuk, Hydrogen Embrittlement of Titanium: Phenomena and Main Ways of Prevention, Prog. Phys. Met., 25, No. 2: 276-293 (2024). https://doi.org/10.15407/ufm.25.02.276
  5. V.A. Dekhtyarenko, D.G. Savvakin, V.I. Bondarchuk, V.M. Shyvanyuk, T.V. Pryadko, and O.O. Stasiuk, TiMn2-Based Intermetallic Alloys for Hydrogen Accumulation: Problems and Prospects, Prog. Phys. Met., 22, No. 3: 307-351 (2021). https://doi.org/10.15407/ufm.22.03.307
  6. Y. Su, L. Wang, L. Luo, X. Jiang, J. Guo, Fu H. Deoxidation of Titanium alloy using hydrogen. Int. J Нydrogen energy, 34: 8958–8963 (2009). https://doi.org/10.1016/j.ijhydene.2009.08.053
  7. T.V. Pryadko, V.A. Dekhtyarenko, and A.A. Shkola, Influence of the Ambient Medium in the Course of Laser Treatment on the Resistance of Titanium to Hydrogen Embrittlement. Mater Sci 56: 75–81 (2020). https://doi.org/10.1007/s11003-020-00399-w
  8. D.I. Cherkez, A.V. Spitsyn, A.V. Golubeva, et al. Deuterium Permeation Through Reduced Activation V-4Cr-4Ti Alloy and V-4Cr-4Ti Alloy with AlN/Al Coatings, Phys. Atom. Nuclei 82: 1010–1024 (2019). https://doi.org/10.1134/S1063778819070056
  9. H.Yu, A. Díaz, X.Lu, B. Sun, et al. Hydrogen Embrittlement as a Conspicuous Material Challenge─ Comprehensive Review and Future Directions, Chem. Rev. 124: 6271–6392 (2024). https://doi.org/10.1021/acs.chemrev.3c00624
  10. D. Oryshych, V. Dekhtyarenko, T. Pryadko, V. Bondarchuk, and D. Polotskiy, Рrotection of Titanium Against Hydrogen Embrittlement, Machines Technologies Materials, 13, No.12: 561-563 (2019). https://stumejournals.com/journals/mtm/2019/12/561
  11. Y. Takamura. Hydrogen permeation barrier performance characterization of vapor deposited amorphous aluminum oxide films using coloration of tungsten oxide. Surf. Coat. Technol. 153: 114-118 (2002) https://doi.org/10.1016/S0257-8972(01)01697-8
  12. T.V. Pryadko, V.A. Dekhtyarenko, V.I. Bondarchuk, M.A. Vasilyev, and S.M. Voloshko, Complex Approach to Protecting Titanium Constructions from Hydrogen Embrittlement, Metallofiz. Noveishie Tekhnol., 42, No. 10: 1419-1429 (2020). https://doi.org/10.15407/mfint.42.10.1419
  13. A. Perujo, K.S. Forcey, T. Sample, Reduction of deuterium permeation through DIN 1.4914 stainless steel (MANET) by plasma-spray deposited aluminum. J Nucl Mater. 207: 86-91. (1993) https://doi.org/10.1016/0022-3115(93)90249-X
  14. T.S. Cherepova, G.P. Dmitrieva, A.V. Nosenko and A.M. Semirga, Wear-resistant alloy for protection of contact surfaces of working aircraft engine blades from oxidation at high temperatures. Sci. Innov. 10: 20-28 (2014). https://doi.org/10.15407/scin10.04.022
  15. G.P. Dmitrieva, T.S. Cherepova, and T.V. Pryadko, Cobalt–Niobium-Carbide Eutectic Alloys for Increasing the Service Life of Gas Turbine Engines, Prog. Phys. Met., 22, No. 4: 678–693 (2021). https://doi.org/10.15407/ufm.22.04.678
  16. H.Y. Mykhailova, V.A. Dekhtyarenko, and Y.V. Vasylyk, Hydrogen sorption properties of Ti15.4Zr30.2Mn(54.4−x−y)VxCryNiy alloy able of being activated at room temperature and pressure of 0.23 MPa. MRS Communications 13, 1288–1295 (2023). https://doi.org/10.1557/s43579-023-00451-1
  17. V.A. Dekhtyarenko, Composite material based on Laves phase with magnesium for hydrogen storage. MRS Communications 14, 337–344 (2024). https://doi.org/10.1557/s43579-024-00534-7
  18. H. Smithson, C.A. Marianetti, D. Morgan, A. Van der Ven, A. Predith, G. Ceder, First-principles study of the stability and electronic structure of metal hydrides, Phys. Rev. B, 66. No.12, 144107 (2002). https://doi.org/10.1103/PhysRevB.66.144107
  19. V. A. Dekhtyarenko, D. G. Savvakin, O. O. Stasiuk, and D. V. Oryshych, Hydrogen Absorption and Desorption by Niobium and Tantalum, Metallofiz. Noveishie Tekhnol., 44, No. 7: 887–897 (2022). https://doi.org/10.15407/mfint.44.07.0887

Article full text

Download PDF